Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Kernel (algebra)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Linear maps === {{Main|Kernel (linear algebra)}} Let ''V'' and ''W'' be [[vector space]]s over a [[Field (mathematics)|field]] (or more generally, [[module (mathematics)|modules]] over a [[Ring (mathematics)|ring]]) and let ''T'' be a [[linear map]] from ''V'' to ''W''. If '''0'''<sub>''W''</sub> is the [[zero vector]] of ''W'', then the kernel of ''T'' (or null space<ref name="Axler Kernel Examples"/>) is the [[preimage]] of the [[zero space|zero subspace]] {'''0'''<sub>''W''</sub>}; that is, the [[subset]] of ''V'' consisting of all those elements of ''V'' that are mapped by ''T'' to the element '''0'''<sub>''W''</sub>. The kernel is usually denoted as {{nowrap|ker ''T''}}, or some variation thereof: : <math> \ker T = \{\mathbf{v} \in V : T(\mathbf{v}) = \mathbf{0}_{W}\} . </math> Since a linear map preserves zero vectors, the zero vector '''0'''<sub>''V''</sub> of ''V'' must belong to the kernel. The transformation ''T'' is injective if and only if its kernel is reduced to the zero subspace.<ref>{{harvnb|Axler|p=60}}</ref> The kernel ker ''T'' is always a [[linear subspace]] of ''V''.<ref name="Dummit Dimension">{{harvnb|Dummit|Foote|2004|p=413}}</ref> Thus, it makes sense to speak of the [[quotient space (linear algebra)|quotient space]] {{nowrap|''V'' / (ker ''T'')}}. The first isomorphism theorem for vector spaces states that this quotient space is [[natural isomorphism|naturally isomorphic]] to the [[image (function)|image]] of ''T'' (which is a subspace of ''W''). As a consequence, the [[dimension (linear algebra)|dimension]] of ''V'' equals the dimension of the kernel plus the dimension of the image.<ref name="Dummit Dimension"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)