Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Kripke semantics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Common modal axiom schemata ==== The following table lists common modal axioms together with their corresponding classes. The naming of the axioms often varies; Here, axiom '''K''' is named after [[Saul Kripke]]; axiom '''T''' is named after the [[Epistemic modal logic#The knowledge or truth axiom|truth axiom]] in [[epistemic logic]]; axiom '''D''' is named after [[deontic logic]]; axiom '''B''' is named after [[L. E. J. Brouwer]]; and axioms '''4''' and '''5''' are named based on [[C. I. Lewis]]'s numbering of [[Symbolic Logic|symbolic logic systems]]. {| class="wikitable" ! Name !! Axiom !! Frame condition |- ! K | <math>\Box (A\to B)\to(\Box A\to \Box B)</math> | holds true for any frames |- ! T | <math>\Box A\to A</math> | [[reflexive relation|reflexive]]: <math>w\,R\,w</math> |- ! Q | <math>\Box\Box A\to\Box A</math> | [[dense relation|dense]]: <math> w\,R\,u\Rightarrow \exists v\,(w\,R\,v \land v\,R\,u)</math> |- ! 4 | <math>\Box A\to\Box\Box A</math> | [[transitive relation|transitive]]: <math>w\,R\,v \wedge v\,R\,u \Rightarrow w\,R\,u</math> |- ! D | <math>\Box A\to\Diamond A</math> or <math>\Diamond\top</math> or <math>\neg\Box\bot</math> | [[serial relation|serial]]: <math>\forall w\,\exists v\,(w\,R\,v)</math> |- ! B | <math>A\to\Box\Diamond A</math> or <math>\Diamond\Box A\to A</math> | [[symmetric relation|symmetric]] : <math>w\,R\,v \Rightarrow v\,R\,w</math> |- ! 5 | <math>\Diamond A\to\Box\Diamond A</math> | [[Euclidean relation|Euclidean]]: <math>w\,R\,u\land w\,R\,v\Rightarrow u\,R\,v</math> |- ! GL | <math>\Box(\Box A\to A)\to\Box A</math> | ''R'' transitive, ''R''<sup>β1</sup> [[well-founded]] |- ! Grz<ref>After [[Andrzej Grzegorczyk]].</ref> | <math>\Box(\Box(A\to\Box A)\to A)\to A</math> | ''R'' reflexive and transitive, ''R''<sup>β1</sup>βId well-founded |- ! H | <math>\Box(\Box A\to B)\lor\Box(\Box B\to A)</math> | <math>w\,R\,u\land w\,R\,v\Rightarrow u\,R\,v\lor v\,R\,u</math><ref>{{Cite book |last=Boolos |first=George |title=The Logic of Provability |publisher=Cambridge University Press |year=1993 |isbn=0-521-43342-8 |pages=148,149}}</ref> |- ! M | <math>\Box\Diamond A\to\Diamond\Box A</math> | (a complicated [[second-order logic|second-order]] property) |- ! G | <math>\Diamond\Box A\to\Box\Diamond A</math> | convergent: <math>w\,R\,u\land w\,R\,v\Rightarrow\exists x\,(u\,R\,x\land v\,R\,x)</math> |- ! - | <math> A\to\Box A</math> | discrete: <math>w\,R\,v\Rightarrow w=v</math> |- ! - | <math>\Diamond A\to\Box A</math> | [[partial function]]: <math> w\,R\,u\land w\,R\,v\Rightarrow u=v</math> |- ! - | <math>\Diamond A\leftrightarrow\Box A</math> | function: <math> \forall w\,\exists!u\, w\,R\,u</math> (<math> \exists!</math> is the [[uniqueness quantification]]) |- !- | <math>\Box A</math> or <math>\Box \bot</math> | empty: <math> \forall w\,\forall u\, \neg ( w\, R\,u)</math> |- |} Axiom '''K''' can also be [[Rewriting|rewritten]] as <math>\Box [(A\to B)\land A]\to \Box B</math>, which logically establishes [[modus ponens]] as a [[rule of inference]] in every possible world. Note that for axiom '''D''', <math>\Diamond A</math> implicitly implies <math>\Diamond\top</math>, which means that for every possible world in the model, there is always at least one possible world accessible from it (which could be itself). This implicit implication <math>\Diamond A \rightarrow \Diamond\top</math> is similar to the implicit implication by [[Quantifier (logic)#Range of quantification|existential quantifier on the range of quantification]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)