Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Large eddy simulation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Derivation==== Using [[Einstein notation]], the Navier–Stokes equations for an incompressible fluid in Cartesian coordinates are : <math> \frac{\partial u_i}{\partial x_i} = 0 </math> : <math> \frac{\partial u_i}{\partial t} + \frac{\partial u_iu_j}{\partial x_j} = - \frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j}. </math> Filtering the momentum equation results in : <math> \overline{\frac{\partial u_i}{\partial t}} + \overline{\frac{\partial u_iu_j}{\partial x_j}} = - \overline{\frac{1}{\rho} \frac{\partial p}{\partial x_i}} + \overline{\nu \frac{\partial^2 u_i}{\partial x_j \partial x_j}}. </math> If we assume that filtering and differentiation commute, then : <math> \frac{\partial \bar{u_i}}{\partial t} + \overline{\frac{\partial u_iu_j}{\partial x_j}} = - \frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial^2 \bar{u_i}}{\partial x_j \partial x_j}. </math> This equation models the changes in time of the filtered variables <math>\bar{u_i}</math>. Since the unfiltered variables <math>u_i</math> are not known, it is impossible to directly calculate <math>\overline{\frac{\partial u_iu_j}{\partial x_j}}</math>. However, the quantity <math> \frac{\partial \bar{u_i}\bar{u_j}}{\partial x_j}</math> is known. A substitution is made: : <math> \frac{\partial \bar{u_i}}{\partial t} + \frac{\partial \bar{u_i}\bar{u_j}}{\partial x_j} = - \frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial^2 \bar{u_i}}{\partial x_j \partial x_j} - \left(\overline{ \frac{\partial u_iu_j}{\partial x_j}} - \frac{\partial \bar{u_i}\bar{u_j}}{\partial x_j}\right). </math> Let <math>\tau_{ij} = \overline{u_i u_j} - \bar{u}_{i} \bar{u}_{j}</math>. The resulting set of equations are the LES equations: :<math> \frac{\partial \bar{u_i}}{\partial t} + \bar{u_j} \frac{\partial \bar{u_i}}{\partial x_j} = - \frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial^2 \bar{u_i}}{\partial x_j \partial x_j} - \frac{\partial\tau_{ij}}{\partial x_j}. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)