Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Leech lattice
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Using the binary Golay code=== The Leech lattice can be explicitly constructed as the set of vectors of the form 2<sup>−3/2</sup>(''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a''<sub>24</sub>) where the ''a''<sub>''i''</sub> are integers such that :<math>a_1+a_2+\cdots+a_{24}\equiv 4a_1\equiv 4a_2\equiv\cdots\equiv4a_{24}\pmod 8</math> and for each fixed residue class modulo 4, the 24 bit word, whose 1s correspond to the coordinates ''i'' such that ''a''<sub>''i''</sub> belongs to this residue class, is a word in the [[binary Golay code]]. The Golay code, together with the related Witt design, features in a construction for the 196560 minimal vectors in the Leech lattice. Leech lattice (L mod 8) can be directly constructed by combination of the 3 following sets, <math>L ~ = ~~ (4B + C)\otimes{1_{2^{12}}} ~~ + ~~~ {1_{2^{24}}}\otimes 2G ~~~ </math> , (<math>{1_{n}}</math> is a ones vector of size n), * G - 24-bit Golay code * B - Binary integer sequence * C - [[Thue-Morse sequence|Thue-Morse Sequence]] or integer bit parity sum (that give chirality of the lattice) <syntaxhighlight lang="c"> 24-bit Golay [2^12 codes] 24-bit integer[2^24 codes] Parity Leech Lattice [2^36 codes] G = B = C = L = (4B + C) β 2G 00000000 00000000 00000000 00000000 00000000 00000000 0 00000000 00000000 00000000 11111111 00000000 00000000 10000000 00000000 00000000 1 22222222 00000000 00000000 11110000 11110000 00000000 01000000 00000000 00000000 1 22220000 22220000 00000000 00001111 11110000 00000000 11000000 00000000 00000000 0 ... 11001100 11001100 00000000 00100000 00000000 00000000 1 51111111 11111111 11111111 00110011 11001100 00000000 10100000 00000000 00000000 0 73333333 11111111 11111111 00111100 00111100 00000000 01100000 00000000 00000000 0 ... 11000011 00111100 00000000 11100000 00000000 00000000 1 15111111 11111111 11111111 10101010 10101010 00000000 00010000 00000000 00000000 1 37333333 11111111 11111111 01010101 10101010 00000000 10010000 00000000 00000000 0 ... 01011010 01011010 00000000 01010000 00000000 00000000 0 44000000 00000000 00000000 10100101 01011010 00000000 11010000 00000000 00000000 1 66222222 00000000 00000000 ... ... ... ... 11111111 11111111 11111111 11111111 11111111 11111111 0 66666666 66666666 66666666 </syntaxhighlight>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)