Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Level set
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Sublevel and superlevel sets== A set of the form : <math> L_c^-(f) = \left\{ (x_1, \dots, x_n) \mid f(x_1, \dots, x_n) \leq c \right\} </math> is called a '''sublevel set''' of ''f'' (or, alternatively, a '''lower level set''' or '''trench''' of ''f''). A '''strict sublevel''' set of ''f'' is : <math> \left\{ (x_1, \dots, x_n) \mid f(x_1, \dots, x_n) < c \right\} </math> Similarly : <math> L_c^+(f) = \left\{ (x_1, \dots, x_n) \mid f(x_1, \dots, x_n) \geq c \right\} </math> is called a '''superlevel set''' of ''f'' (or, alternatively, an '''upper level set''' of ''f''). And a '''strict superlevel set''' of ''f'' is : <math> \left\{ (x_1, \dots, x_n) \mid f(x_1, \dots, x_n) > c \right\} </math> Sublevel sets are important in [[mathematical optimization|minimization theory]]. By [[Extreme value theorem#Extension to semi-continuous functions|Weierstrass's theorem]], the [[totally bounded set|boundness]] of some [[empty set|non-empty]] sublevel set and the lower-semicontinuity of the function implies that a function attains its minimum. The [[convex set|convexity]] of all the sublevel sets characterizes [[quasiconvex function]]s.<ref>{{cite journal|last=Kiwiel|first=Krzysztof C.|title=Convergence and efficiency of subgradient methods for quasiconvex minimization|journal=Mathematical Programming, Series A|publisher=Springer|location=Berlin, Heidelberg|issn=0025-5610|pages=1β25|volume=90|issue=1|doi=10.1007/PL00011414|year=2001|mr=1819784|s2cid=10043417}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)