Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Likelihood function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Continuous probability distribution=== Let <math display="inline">X</math> be a [[random variable]] following an [[Probability distribution#Continuous probability distribution|absolutely continuous probability distribution]] with [[probability density function|density function]] <math display="inline">f</math> (a function of <math display="inline">x</math>) which depends on a parameter <math display="inline">\theta</math>. Then the function <math display="block">\mathcal{L}(\theta \mid x) = f_\theta (x), </math> considered as a function of <math display="inline">\theta</math>, is the ''likelihood function'' (of <math display="inline">\theta</math>, given the [[Outcome (probability)|outcome]] <math display="inline">X=x</math>). Again, <math display="inline">\mathcal{L}</math> is not a probability density or mass function over <math display="inline">\theta</math>, despite being a function of <math display="inline">\theta</math> given the observation <math display="inline">X = x</math>. ====Relationship between the likelihood and probability density functions==== The use of the [[probability density function|probability density]] in specifying the likelihood function above is justified as follows. Given an observation <math display="inline">x_j</math>, the likelihood for the interval <math display="inline">[x_j, x_j + h]</math>, where <math display="inline">h > 0</math> is a constant, is given by <math display="inline"> \mathcal{L}(\theta\mid x \in [x_j, x_j + h]) </math>. Observe that <math display="block"> \mathop\operatorname{arg\,max}_\theta \mathcal{L}(\theta\mid x \in [x_j, x_j + h]) = \mathop\operatorname{arg\,max}_\theta \frac{1}{h} \mathcal{L}(\theta\mid x \in [x_j, x_j + h]) ,</math> since <math display="inline"> h </math> is positive and constant. Because <math display="block"> \mathop\operatorname{arg\,max}_\theta \frac 1 h \mathcal{L}(\theta\mid x \in [x_j, x_j + h]) = \mathop\operatorname{arg\,max}_\theta \frac 1 h \Pr(x_j \leq x \leq x_j + h \mid \theta) = \mathop\operatorname{arg\,max}_\theta \frac 1 h \int_{x_j}^{x_j+h} f(x\mid \theta) \,dx, </math> where <math display="inline"> f(x\mid \theta) </math> is the probability density function, it follows that <math display="block"> \mathop\operatorname{arg\,max}_\theta \mathcal{L}(\theta\mid x \in [x_j, x_j + h]) = \mathop\operatorname{arg\,max}_\theta \frac{1}{h} \int_{x_j}^{x_j+h} f(x\mid\theta) \,dx .</math> The first [[fundamental theorem of calculus]] provides that <math display="block"> \lim_{h \to 0^{+}} \frac 1 h \int_{x_j}^{x_j+h} f(x\mid\theta) \,dx = f(x_j \mid \theta). </math> Then <math display="block"> \begin{align} \mathop\operatorname{arg\,max}_\theta \mathcal{L}(\theta\mid x_j) &= \mathop\operatorname{arg\,max}_\theta \left[ \lim_{h\to 0^{+}} \mathcal{L}(\theta\mid x \in [x_j, x_j + h]) \right] \\[4pt] &= \mathop\operatorname{arg\,max}_\theta \left[ \lim_{h\to 0^{+}} \frac{1}{h} \int_{x_j}^{x_j+h} f(x\mid\theta) \,dx \right] \\[4pt] &= \mathop\operatorname{arg\,max}_\theta f(x_j \mid \theta). \end{align} </math> Therefore, <math display="block"> \mathop\operatorname{arg\,max}_\theta \mathcal{L}(\theta\mid x_j) = \mathop\operatorname{arg\,max}_\theta f(x_j \mid \theta), </math> and so maximizing the probability density at <math display="inline"> x_j </math> amounts to maximizing the likelihood of the specific observation <math display="inline"> x_j </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)