Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Limit state design
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Factor development== The load and resistance factors are determined using statistics and a pre-selected probability of failure. Variability in the quality of construction, consistency of the construction material are accounted for in the factors. Generally, a factor of unity (one) or less is applied to the resistances of the material, and a factor of unity or greater to the loads. Not often used, but in some load cases a factor may be less than unity due to a reduced probability of the combined loads. The aforementioned factors can differ for different materials or even between differing grades of the same material. For example, wood has larger factor of variability than steel. The factors applied to resistance also account for the degree of scientific confidence in the derivation of the values. In determining the specific magnitude of the factors, more deterministic loads (e.g., dead load - the weight of the structure and permanent attachments like walls, floor treatments, ceiling finishes) are given lower factors (for example 1.4) than highly variable loads like earthquake, wind, or live (occupancy) loads (1.6). Impact loads are typically given higher factors still (say 2.0) in order to account for both their unpredictable magnitudes and the dynamic nature of the loading vs. the static nature of most models. Limit states design has the potential to produce a more consistently designed structure as each element is intended to have the same probability of failure. In practical terms this normally results in a more efficient structure, and as such, it can be argued that LSD is superior from a practical engineering viewpoint.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)