Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Line element
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Line elements in Euclidean space== {{main|Euclidean space}} [[File:Line element.svg|thumb|Vector line element d'''r''' (green) in [[three-dimensional|3d]] Euclidean space, where λ is a [[parametric equation|parameter]] of the space curve (light green).]] Following are examples of how the line elements are found from the metric. ===Cartesian coordinates=== The simplest line element is in [[Cartesian coordinates]] - in which case the metric is just the [[Kronecker delta]]: <math display="block">g_{ij} = \delta_{ij}</math> (here ''i, j'' = 1, 2, 3 for space) or in [[matrix (mathematics)|matrix]] form (''i'' denotes row, ''j'' denotes column): <math display="block">[g_{ij}] = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}</math> The general curvilinear coordinates reduce to Cartesian coordinates: <math display="block">(q^1,q^2,q^3) = (x, y, z)\,\Rightarrow\,d\mathbf{r}=(dx,dy,dz)</math> so <math display="block"> ds^2 = g_{ij} dq^i dq^j = dx^2 +dy^2 +dz^2 </math> ===Orthogonal curvilinear coordinates=== For all [[orthogonal coordinates]] the metric is given by:<ref name="SpiegelLipschutzSpellman"/> <math display="block">[g_{ij}] = \begin{pmatrix} h_1^2 & 0 & 0\\ 0 & h_2^2 & 0\\ 0 & 0 & h_3^2 \end{pmatrix}</math> where <math display="block">h_i = \left|\frac{\partial\mathbf{r}}{\partial q^i}\right|</math> for ''i'' = 1, 2, 3 are [[curvilinear coordinates#Orthogonal curvilinear coordinates in 3d|scale factor]]s, so the square of the line element is: <math display="block">ds^2 = h_1^2(dq^1)^2 + h_2^2(dq^2)^2 + h_3^2(dq^3)^2 </math> Some examples of line elements in these coordinates are below.<ref name="Kay"/> {| class="wikitable" |- ! Coordinate system ! {{math|(''q''<sup>1</sup>, ''q''<sup>2</sup>, ''q''<sup>3</sup>)}} ! Metric ! Line element |- |[[Cartesian coordinate system|Cartesian]] |{{math|(''x'', ''y'', ''z'')}} |<math>[g_{ij}] = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}</math> |<math> ds^2 = dx^2 + dy^2 + dz^2 </math> |- |[[Polar coordinate system|Plane polars]] |{{math|(''r'', ''θ'')}} |<math>[g_{ij}] = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \\ \end{pmatrix}</math> |<math> ds^2= dr^2 +r^2 d \theta^2</math> |- |[[Spherical coordinate system|Spherical polar]]s |{{math|(''r'', ''θ'', ''φ'')}} |<math>[g_{ij}] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2\sin^2\theta \\ \end{pmatrix}</math> |<math> ds^2=dr^2+r^2 d \theta\ ^2+ r^2 \sin^2 \theta d \varphi^2 </math> |- |[[Cylindrical polar coordinates|Cylindrical polar]]s |{{math|(''r'', ''φ'', ''z'')}} |<math>[g_{ij}] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}</math> |<math> ds^2=dr^2+ r^2 d \varphi^2 +dz^2 </math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)