Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear map
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Matrices== {{Main|Transformation matrix}} If <math>V</math> and <math>W</math> are [[finite-dimensional]] vector spaces and a [[basis of a vector space|basis]] is defined for each vector space, then every linear map from <math>V</math> to <math>W</math> can be represented by a [[matrix (mathematics)|matrix]].<ref>{{harvnb|Rudin|1976|page=210}} Suppose <math display="inline">\left\{\mathbf{x}_1, \ldots, \mathbf{x}_n\right\}</math> and <math display="inline">\left\{\mathbf{y}_1, \ldots, \mathbf{y}_m\right\}</math> are bases of vector spaces {{mvar|X}} and {{mvar|Y}}, respectively. Then every <math display="inline">A \in L(X, Y)</math> determines a set of numbers <math display="inline">a_{i,j}</math> such that <math display="block">A\mathbf{x}_j = \sum_{i=1}^m a_{i,j}\mathbf{y}_i\quad (1 \leq j \leq n).</math> It is convenient to represent these numbers in a rectangular array of {{mvar|m}} rows and {{mvar|n}} columns, called an {{mvar|m}} ''by'' {{mvar|n}} ''matrix'': <math display="block">[A] = \begin{bmatrix} a_{1,1} & a_{1,2} & \ldots & a_{1,n} \\ a_{2,1} & a_{2,2} & \ldots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \ldots & a_{m,n} \end{bmatrix}</math> Observe that the coordinates <math display="inline">a_{i,j}</math> of the vector <math display="inline">A\mathbf{x}_j</math> (with respect to the basis <math display="inline">\{\mathbf{y}_1, \ldots, \mathbf{y}_m\}</math>) appear in the ''j''<sup>th</sup> column of <math display="inline">[A]</math>. The vectors <math display="inline">A\mathbf{x}_j</math> are therefore sometimes called the ''column vectors'' of <math display="inline">[A]</math>. With this terminology, the ''range'' of {{mvar|A}} ''is spanned by the column vectors of <math display="inline">[A]</math>''. </ref> This is useful because it allows concrete calculations. Matrices yield examples of linear maps: if <math>A</math> is a real <math>m \times n</math> matrix, then <math>f(\mathbf x) = A \mathbf x</math> describes a linear map <math>\R^n \to \R^m</math> (see [[Euclidean space]]). Let <math>\{ \mathbf {v}_1, \ldots , \mathbf {v}_n \}</math> be a basis for <math>V</math>. Then every vector <math>\mathbf {v} \in V</math> is uniquely determined by the coefficients <math>c_1, \ldots , c_n</math> in the field <math>\R</math>: <math display="block">\mathbf{v} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf {v}_n.</math> If <math display="inline">f: V \to W</math> is a linear map, <math display="block">f(\mathbf{v}) = f(c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n) = c_1 f(\mathbf{v}_1) + \cdots + c_n f\left(\mathbf{v}_n\right),</math> which implies that the function ''f'' is entirely determined by the vectors <math>f(\mathbf {v}_1), \ldots , f(\mathbf {v}_n)</math>. Now let <math>\{ \mathbf {w}_1, \ldots , \mathbf {w}_m \}</math> be a basis for <math>W</math>. Then we can represent each vector <math>f(\mathbf {v}_j)</math> as <math display="block">f\left(\mathbf{v}_j\right) = a_{1j} \mathbf{w}_1 + \cdots + a_{mj} \mathbf{w}_m.</math> Thus, the function <math>f</math> is entirely determined by the values of <math>a_{ij}</math>. If we put these values into an <math>m \times n</math> matrix <math>M</math>, then we can conveniently use it to compute the vector output of <math>f</math> for any vector in <math>V</math>. To get <math>M</math>, every column <math>j</math> of <math>M</math> is a vector <math display="block">\begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}</math> corresponding to <math>f(\mathbf {v}_j)</math> as defined above. To define it more clearly, for some column <math>j</math> that corresponds to the mapping <math>f(\mathbf {v}_j)</math>, <math display="block">\mathbf{M} = \begin{pmatrix} \ \cdots & a_{1j} & \cdots\ \\ & \vdots & \\ & a_{mj} & \end{pmatrix}</math> where <math>M</math> is the matrix of <math>f</math>. In other words, every column <math>j = 1, \ldots, n</math> has a corresponding vector <math>f(\mathbf {v}_j)</math> whose coordinates <math>a_{1j}, \cdots, a_{mj}</math> are the elements of column <math>j</math>. A single linear map may be represented by many matrices. This is because the values of the elements of a matrix depend on the bases chosen. The matrices of a linear transformation can be represented visually: # Matrix for <math display="inline">T</math> relative to <math display="inline">B</math>: <math display="inline">A</math> # Matrix for <math display="inline">T</math> relative to <math display="inline">B'</math>: <math display="inline">A'</math> # Transition matrix from <math display="inline">B'</math> to <math display="inline">B</math>: <math display="inline">P</math> # Transition matrix from <math display="inline">B</math> to <math display="inline">B'</math>: <math display="inline">P^{-1}</math> [[File:Linear_transformation_visualization.svg|frame|The relationship between matrices in a linear transformation|none]] Such that starting in the bottom left corner <math display="inline">\left[\mathbf{v}\right]_{B'}</math> and looking for the bottom right corner <math display="inline">\left[T\left(\mathbf{v}\right)\right]_{B'}</math>, one would left-multiply—that is, <math display="inline">A'\left[\mathbf{v}\right]_{B'} = \left[T\left(\mathbf{v}\right)\right]_{B'}</math>. The equivalent method would be the "longer" method going clockwise from the same point such that <math display="inline">\left[\mathbf{v}\right]_{B'}</math> is left-multiplied with <math display="inline">P^{-1}AP</math>, or <math display="inline">P^{-1}AP\left[\mathbf{v}\right]_{B'} = \left[T\left(\mathbf{v}\right)\right]_{B'}</math>. ===Examples in two dimensions=== In two-[[dimension]]al space '''R'''<sup>2</sup> linear maps are described by 2 × 2 [[matrix (mathematics)|matrices]]. These are some examples: * [[Rotation (mathematics)|rotation]] ** by 90 degrees counterclockwise: <math display="block">\mathbf{A} = \begin{pmatrix} 0 & -1\\ 1 & 0\end{pmatrix}</math> ** by an angle ''θ'' counterclockwise: <math display="block">\mathbf{A} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}</math> * [[Reflection (mathematics)|reflection]] ** through the ''x'' axis: <math display="block">\mathbf{A} = \begin{pmatrix} 1 & 0\\ 0 & -1\end{pmatrix}</math> ** through the ''y'' axis: <math display="block">\mathbf{A} = \begin{pmatrix}-1 & 0\\ 0 & 1\end{pmatrix}</math> ** through a line making an angle ''θ'' with the origin: <math display="block">\mathbf{A} = \begin{pmatrix}\cos2\theta & \sin2\theta \\ \sin2\theta & -\cos2\theta \end{pmatrix}</math> * [[Scaling (geometry)|scaling]] by 2 in all directions: <math display="block">\mathbf{A} = \begin{pmatrix} 2 & 0\\ 0 & 2\end{pmatrix} = 2\mathbf{I}</math> * [[shear mapping|horizontal shear mapping]]: <math display="block">\mathbf{A} = \begin{pmatrix} 1 & m\\ 0 & 1\end{pmatrix}</math> * skew of the ''y'' axis by an angle ''θ'': <math display="block">\mathbf{A} = \begin{pmatrix} 1 & -\sin\theta\\ 0 & \cos\theta\end{pmatrix}</math> * [[squeeze mapping]]: <math display="block">\mathbf{A} = \begin{pmatrix} k & 0\\ 0 & \frac{1}{k}\end{pmatrix}</math> * [[Projection (linear algebra)|projection]] onto the ''y'' axis: <math display="block">\mathbf{A} = \begin{pmatrix} 0 & 0\\ 0 & 1\end{pmatrix}.</math> If a linear map is only composed of rotation, reflection, and/or uniform scaling, then the linear map is a [[conformal linear transformation]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)