Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logical NOR
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Alternative notations and names== [[Charles Sanders Peirce|Peirce]] is the first to show the functional completeness of non-disjunction while he doesn't publish his result.<ref name="peirce1880">{{cite encyclopedia |last1=Peirce |first1=C. S. |title=A Boolian Algebra with One Constant |encyclopedia=Collected Papers of Charles Sanders Peirce, Volume IV The Simplest Mathematics |editor1-last=Hartshorne |editor1-first=C. |editor2-last=Weiss |editor2-first=P. |orig-date=1880 |date=1933 |pages=13–18 |location=Massachusetts |publisher=Harvard University Press}}</ref><ref name="peirce1902">{{cite encyclopedia |last1=Peirce |first1=C. S. |title=The Simplest Mathematics |encyclopedia=Collected Papers of Charles Sanders Peirce, Volume IV The Simplest Mathematics |editor1-last=Hartshorne |editor1-first=C. |editor2-last=Weiss |editor2-first=P. |orig-date=1902 |date=1933 |pages=189–262 |location=Massachusetts |publisher=Harvard University Press}}</ref> Peirce used <math>\overline{\curlywedge}</math> for [[Sheffer stroke|non-conjunction]] and <math>\curlywedge</math> for non-disjunction (in fact, what Peirce himself used is <math>\curlywedge</math> and he didn't introduce <math>\overline{\curlywedge}</math> while Peirce's editors made such disambiguated use).<ref name="peirce1902"/> Peirce called <math>\curlywedge</math> the '''{{visible anchor|ampheck}}''' (from Ancient Greek {{lang|grc|ἀμφήκης}}, {{transliteration|grc|amphēkēs}}, "cutting both ways").<ref name="peirce1902"/> In 1911, {{ill|Edward Stamm|lt=Stamm|pl}} was the first to publish a description of both non-conjunction (using <math>\sim</math>, the Stamm hook), and non-disjunction (using <math>*</math>, the Stamm star), and showed their functional completeness.<ref name="Stamm_1911"/><ref>{{cite web |last1=Zach |first1=R. |title=Sheffer stroke before Sheffer: Edward Stamm |url=https://richardzach.org/2023/02/sheffer-stroke-before-sheffer-edward-stamm/ |date=18 February 2023|access-date=2 July 2023}}</ref> Note that most uses in logical notation of <math>\sim</math> use this for negation. In 1913, [[Henry Maurice Sheffer|Sheffer]] described non-disjunction and showed its functional completeness. Sheffer used <math>\mid</math> for non-conjunction, and <math>\wedge</math> for non-disjunction. In 1935, [[Donald L. Webb|Webb]] described non-disjunction for <math>n</math>-valued logic, and use <math>\mid</math> for the operator. So some people call it '''Webb operator''',<ref name="Webb_1935"/> '''Webb operation'''<ref name="Vasyukevich_2011"/> or '''Webb function'''.<ref name="Freimann-Renfro-Webb_2017"/> In 1940, [[Willard Van Orman Quine|Quine]] also described non-disjunction and use <math>\downarrow</math> for the operator.<ref name="quine1940">{{cite book |last1=Quine |first1=W. V |title=Mathematical Logic |date=1981 |orig-date=1940 |publisher=Harvard University Press |location=Cambridge, London, New York, New Rochelle, Melbourne and Sydney |edition=Revised |page=45}}</ref> So some people call the operator '''Peirce arrow''' or '''Quine dagger'''. In 1944, [[Alonzo Church|Church]] also described non-disjunction and use <math>\overline{\vee}</math> for the operator.<ref name="church1944">{{cite book |last1=Church |first1=A. |title=Introduction to Mathematical Logic |orig-date=1944|date=1996 |publisher=Princeton University Press |location=New Jersey |page=37}}</ref> In 1954, [[Józef Maria Bocheński|Bocheński]] used <math>X</math> in <math>Xpq</math> for non-disjunction in [[Polish notation]].<ref name="Bochenski1954">{{cite book |last1=Bocheński |first1=J. M. |title=Précis de logique mathématique |date=1954 |location=Netherlands |publisher=F. G. Kroonder, Bussum, Pays-Bas |language=French |page=11}}</ref> [[APL (programming language)|APL]] uses a glyph {{code|⍱}} that combines a {{code|∨}} with a {{code|~}}.<ref>[https://aplwiki.com/wiki/Nor Nor], ''APL Wiki''.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)