Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Longitude
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Values== Longitude is given as an [[angle|angular measurement]] with 0° at the [[Prime Meridian]], ranging from −180° westward to +180° eastward. The Greek letter λ (lambda)<ref>{{cite web|url=http://www.colorado.edu/geography/gcraft/notes/datum/gif/llhxyz.gif|title=Coordinate Conversion|website=colorado.edu|access-date=14 March 2018|archive-url=https://web.archive.org/web/20090929121405/http://www.colorado.edu/geography/gcraft/notes/datum/gif/llhxyz.gif|archive-date=29 September 2009|url-status=dead}}</ref><ref>"λ = Longitude east of Greenwich (for longitude west of Greenwich, use a minus sign)."<br />John P. Snyder, ''[https://pubs.er.usgs.gov/usgspubs/pp/pp1395 Map Projections, A Working Manual]'' ({{Webarchive|url=https://web.archive.org/web/20100701103721/http://pubs.er.usgs.gov/usgspubs/pp/pp1395 |date=2010-07-01 }}), [[USGS]] Professional Paper 1395, page ix.</ref> is used to denote the location of a place on Earth east or west of the Prime Meridian. Each degree of longitude is sub-divided into 60 [[minute of arc|minutes]], each of which is divided into 60 [[arcsecond|seconds]]. A longitude is thus specified in [[sexagesimal]] notation as, for example, 23° 27′ 30″ E. For higher precision, the seconds are specified with a [[decimal fraction]]. An alternative representation uses degrees and minutes, and parts of a minute are expressed in decimal notation, thus: 23° 27.5′ E. Degrees may also be expressed as a decimal fraction: 23.45833° E. For calculations, the angular measure may be converted to [[radian]]s, so longitude may also be expressed in this manner as a signed fraction of {{pi}} ([[pi]]), or an unsigned fraction of 2{{pi}}. For calculations, the west/east suffix is replaced by a negative sign in the [[western hemisphere]]. The international standard convention ([[ISO 6709]])—that east is positive—is consistent with a right-handed [[Cartesian coordinate system]], with the North Pole up. A specific longitude may then be combined with a specific latitude (positive in the [[northern hemisphere]]) to give a precise position on the Earth's surface. Confusingly, the convention of negative for east is also sometimes seen, most commonly in the [[United States]]; the [[Earth System Research Laboratories]] used it on an older version of one of their pages, in order "to make coordinate entry less awkward" for applications confined to the [[Western Hemisphere]]. They have since shifted to the standard approach.<ref>[https://www.esrl.noaa.gov/gmd/grad/solcalc/sunrise.html NOAA ESRL Sunrise/Sunset Calculator] {{Webarchive|url=https://web.archive.org/web/20191031050403/https://www.esrl.noaa.gov/gmd/grad/solcalc/sunrise.html |date=2019-10-31 }} (deprecated). ''[[Earth System Research Laboratories]]''. Retrieved October 18, 2019.</ref> The longitude is [[mathematical singularity|singular]] at the [[Geographical pole|Poles]] and calculations that are sufficiently accurate for other positions may be inaccurate at or near the Poles. Also the [[Discontinuity (mathematics)|discontinuity]] at the ±[[180th meridian|180° meridian]] must be handled with care in calculations. An example is a calculation of east displacement by subtracting two longitudes, which gives the wrong answer if the two positions are on either side of this meridian. To avoid these complexities, some applications use another [[horizontal position representation]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)