Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mach–Zehnder interferometer
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Uses == The Mach–Zehnder interferometer's relatively large and freely accessible working space, and its flexibility in locating the fringes has made it the interferometer of choice for [[Flow visualization|visualizing flow]] in wind tunnels<ref name=Chevalerias1957>{{Cite journal | last1 = Chevalerias | first1 = R. | last2 = Latron | first2 = Y. | last3 = Veret | first3 = C. | doi = 10.1364/JOSA.47.000703 | title = Methods of Interferometry Applied to the Visualization of Flows in Wind Tunnels | journal = Journal of the Optical Society of America | volume = 47 | issue = 8 | pages = 703 | year = 1957 | bibcode = 1957JOSA...47..703C }}</ref><ref name=Ristic>{{cite web |last=Ristić |first=Slavica |title=Flow visualization techniques in wind tunnels – optical methods (Part II) |url=http://www.vti.mod.gov.rs/ntp/rad2007/2-07/rist/rist.pdf |publisher=Military Technical Institute, Serbia |access-date=6 April 2012}}</ref> and for flow visualization studies in general. It is frequently used in the fields of aerodynamics, [[plasma physics]] and [[heat transfer]] to measure pressure, density, and temperature changes in gases.<ref name=HariharanBasics2007/>{{rp|18,93–95}} Mach–Zehnder interferometers are used in [[electro-optic modulator]]s, electronic devices used in various [[fiber-optic communication]] applications. Mach–Zehnder modulators are incorporated in monolithic [[integrated circuit]]s and offer well-behaved, high-bandwidth electro-optic amplitude and phase responses over a multiple-gigahertz frequency range. Mach–Zehnder interferometers are also used to study one of the most counterintuitive predictions of quantum mechanics, the phenomenon known as [[quantum entanglement]].<ref name=Paris1999>{{cite journal |last=Paris |first=M. G. A. |title=Entanglement and visibility at the output of a Mach–Zehnder interferometer |journal=Physical Review A |date=1999 |volume=59 |issue=2 |pages=1615–1621 |url=http://qinf.fisica.unimi.it/~paris/PDF/visent.pdf |access-date=2 April 2012 |arxiv=quant-ph/9811078 |bibcode=1999PhRvA..59.1615P |doi=10.1103/PhysRevA.59.1615 |s2cid=13963928 |archive-url=https://web.archive.org/web/20160910074215/http://qinf.fisica.unimi.it/~paris/PDF/visent.pdf |archive-date=10 September 2016 |url-status=dead }}</ref><ref name=Haack2010>{{Cite journal | last1 = Haack | first1 = G. R. | last2 = Förster | first2 = H. | last3 = Büttiker | first3 = M. | title = Parity detection and entanglement with a Mach-Zehnder interferometer | doi = 10.1103/PhysRevB.82.155303 | journal = Physical Review B | volume = 82 | issue = 15 | pages = 155303 | year = 2010 |arxiv = 1005.3976 |bibcode = 2010PhRvB..82o5303H | s2cid = 119261326 }}</ref> The possibility to easily control the features of the light in the reference channel without disturbing the light in the object channel popularized the Mach–Zehnder configuration in [[holographic interferometry]]. In particular, [[optical heterodyne detection]] with an off-axis, frequency-shifted reference beam ensures good experimental conditions for shot-noise limited holography with video-rate cameras,<ref>{{cite journal |author=Michel Gross |author2=Michael Atlan |title=Digital holography with ultimate sensitivity|journal=Optics Letters|volume=32 |issue=8 |pages=909–911 |year=2007 |arxiv = 0803.3076 |bibcode = 2007OptL...32..909G |doi = 10.1364/OL.32.000909 |pmid=17375150 |s2cid=6361448 }}</ref> vibrometry,<ref>{{cite journal |author=Francois Bruno |author2=Jérôme Laurent |author3=Daniel Royer |author4=Michael Atlan |title=Holographic imaging of surface acoustic waves |journal=Applied Physics Letters|volume=104 |issue=1 |pages=083504 |year=2014 |arxiv=1401.5344 |bibcode = 2014ApPhL.104a3504Y |doi = 10.1063/1.4861116 }}</ref> and laser Doppler imaging of blood flow.<ref>{{cite journal |author=Caroline Magnain |author2= Amandine Castel |author3= Tanguy Boucneau |author4= Manuel Simonutti |author5= Isabelle Ferezou |author6= Armelle Rancillac |author7= Tania Vitalis |author8= José-Alain Sahel |author9= Michel Paques |author10=Michael Atlan |title=Holographic laser Doppler imaging of microvascular blood flow |journal=Journal of the Optical Society of America A |volume=31 |issue= 12|pages=2723–2735 |year=2014 |doi = 10.1364/JOSAA.31.002723|pmid= 25606762 |arxiv = 1412.0580 |bibcode = 2014JOSAA..31.2723M |s2cid= 42373720 }}</ref> In [[optical telecommunications]] it is used as an [[electro-optic modulator]] for phase and amplitude modulation of light. [[Optical computing]] researchers have proposed using Mach-Zehnder interferometer configurations in optical neural chips for greatly accelerating complex-valued neural network algorithms.<ref name="Zhang Gu Jiang Thompson 2021 p. ">{{cite journal | last1=Zhang | first1=H. | last2=Gu | first2=M. | last3=Jiang | first3=X. D. | last4=Thompson | first4=J. | last5=Cai | first5=H. | last6=Paesani | first6=S. | last7=Santagati | first7=R. | last8=Laing | first8=A. | last9=Zhang | first9=Y. | last10=Yung | first10=M. H. | last11=Shi | first11=Y. Z. | last12=Muhammad | first12=F. K. | last13=Lo | first13=G. Q. | last14=Luo | first14=X. S. | last15=Dong | first15=B. | last16=Kwong | first16=D. L. | last17=Kwek | first17=L. C. | last18=Liu | first18=A. Q. | title=An optical neural chip for implementing complex-valued neural network | journal=Nature Communications | volume=12 | issue=1 | date=January 19, 2021 | issn=2041-1723 | pmid=33469031 | pmc=7815828 | doi=10.1038/s41467-020-20719-7 | page=457}}</ref> The versatility of the Mach–Zehnder configuration has led to its being used in a wide range of fundamental research topics in quantum mechanics, including studies on [[counterfactual definiteness]], [[quantum entanglement]], [[quantum computation]], [[quantum cryptography]], [[quantum logic]], [[Elitzur–Vaidman bomb tester]], the [[quantum eraser experiment]], the [[quantum Zeno effect]], and [[neutron diffraction]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)