Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Magnetic vector potential
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Interpretation as Potential Momentum == {{context|date=April 2025}} By equating [[Newton%27s_laws_of_motion#Second_law|Newton's second law]] with the [[Lorentz force law]] we can obtain<ref name="Semon1996" /> <math display="block"> m\frac{\mathrm{d}v}{\mathrm{d}t}=q \left(\mathbf{E} + \mathbf{v}\times\mathbf{B} \right).</math> Dotting this with the velocity yields <math display="block"> \frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{1}{2}m v^2\right) = q\mathbf{v} \cdot \left(\mathbf{E} + \mathbf{v}\times\mathbf{B} \right). </math> With the [[dot product]] of the [[cross product]] being zero, substituting <math display="block">\mathbf{E} = - \nabla \phi - \frac { \partial \mathbf{A} } { \partial t },</math> and the [[ convective derivative]] of <math>\phi</math> in the above equation then gives <math display="block"> \frac{\mathrm{d}}{\mathrm{d} t} \left ( \frac{1}{2} mv^2 + q \phi \right ) = \frac{\partial}{\partial t} q \left ( \phi - \mathbf{v} \cdot \mathbf{A} \right ) </math> which tells us the time derivative of the "generalized energy" <math> \frac{1}{2} mv^2 + q \phi </math> in terms of a velocity dependent potential <math> q \left ( \phi - \mathbf{v} \cdot \mathbf{A} \right ) </math>, and <math display="block"> \frac{\mathrm{d}}{\mathrm{d} t} \left ( mv + q \mathbf{A} \right ) = - \nabla q \left ( \phi - \mathbf{v} \cdot \mathbf{A} \right ) </math> which gives the time derivative of the [[generalized momentum]] <math> m \mathbf{v} + q \mathbf{A} </math> in terms of the (minus) gradient of the same velocity dependent potential. Thus, when the (partial) time derivative of the velocity dependent potential <math> q (\phi - \mathbf{v} \cdot \mathbf{A}) </math> is zero, the generalized energy is conserved, and likewise when the gradient is zero, the generalized momentum is conserved. As a special case, if the potentials are time or space symmetric, then the generalized energy or momentum respectively will be conserved. Likewise the fields contribute <math> q \mathbf{r} \times \mathbf{A} </math> to the generalized angular momentum, and rotational symmetries will provide conservation laws for the components. Relativistically, we have the single equation <math display="block"> \frac{\mathrm{d}}{\mathrm{d} \tau} \left ( p^{\mu} + qA^{\mu} \right ) = \partial_{\nu} \left ( U^{\mu} \cdot A^{\mu} \right ) </math> where * <math> \tau </math> is the [[proper time]], * <math> p^{\mu} </math> is the [[four momentum]] <math> (E/c, \gamma m \mathbf{v}) </math> * <math> U^{\mu} </math> is the [[four velocity]] <math> \gamma (c, \mathbf{v}) </math> * <math> A^{\mu} </math> is the [[four potential]] <math> (\phi/c, \mathbf{A}) </math> * <math> \partial_{\nu} </math> is the [[four gradient]] <math> (\frac{\partial}{\partial \left ( ct \right )}, -\nabla) </math> === Analytical Mechanics of a Charged Particle === In a field with electric potential <math>\ \phi\ </math> and magnetic potential <math>\ \mathbf{A}</math>, the [[Lagrangian mechanics|Lagrangian]] (<math>\ \mathcal{L}\ </math>) and the [[Hamiltonian mechanics|Hamiltonian]] (<math>\ \mathcal{H}\ </math>) of a particle with mass <math>\ m\ </math> and charge <math>\ q\ </math> are<math display="block">\begin{aligned} \mathcal{L} &= \frac{1}{2} m\ \mathbf v^2 + q\ \mathbf v \cdot \mathbf A - q\ \phi\ ,\\ \mathcal{H} &= \frac{1}{2m}\left( \mathbf{p} - q\mathbf A \right)^2 + q\ \phi ~. \end{aligned}</math> The generalized momentum <math> \mathbf{p} </math> is <math> \frac{\partial \mathcal{L}}{\partial v} = m \mathbf{v} + q \mathbf{A} </math>. The generalized force is <math> \nabla \mathcal{L} = -q \nabla \left ( \phi - \mathbf{v} \cdot \mathbf{A} \right ) </math>. These are exactly the quantities from the previous section. It this framework, the conservation laws come from [[Noether's theorem]]. === Example: Solenoid === Consider a charged particle of charge <math> q </math> located distance <math> r </math> outside a solenoid oriented on the <math> z </math> that is suddenly turned off. By [[Faraday's law of induction]], an electric field will be induced that will impart an impulse to the particle equal to <math> q \Phi_0/2 \pi r \hat{\phi} </math> where <math> \Phi_0 </math> is the initial [[magnetic flux]] through a cross section of the solenoid. <ref> {{cite book | last1=Feynman | first1=Richard P. | author-link1=Richard Feynman | last2=Leighton | first2=Robert B. | author-link2=Robert B. Leighton | last3=Sands | first3=Matthew | author-link3=Matthew Sands | title=The Feynman Lectures on Physics | volume=2 | chapter=17 | chapter-url=https://www.feynmanlectures.caltech.edu/II_17.html | publisher=Addison-Wesley | year=1964 | isbn=978-0-201-02115-8 }} </ref> We can analyze this problem from the perspective of generalized momentum conservation.<ref name=Semon1996 /> Using the analogy to Ampere's law, the magnetic vector potential is <math> \mathbf{A}(r) = \Phi_0/2 \pi r \hat{\phi} </math>. Since <math> \mathbf{p} + q\mathbf{A} </math> is conserved, after the solenoid is turned off the particle will have momentum equal to <math> q \mathbf{A} = q \Phi_0/2 \pi r \hat{\phi} </math> Additionally, because of the symmetry, the <math> z </math> component of the generalized angular momentum is conserved. By looking at the [[Poynting vector]] of the configuration, one can deduce that the fields have nonzero total angular momentum pointing along the solenoid. This is the angular momentum transferred to the fields.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)