Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mean squared error
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Proof of variance and bias relationship==== <math>\begin{align} \operatorname{MSE}(\hat{\theta}) &= \operatorname{E}_\theta \left [(\hat{\theta}-\theta)^2 \right ] \\ &= \operatorname{E}_\theta\left[\left(\hat{\theta}-\operatorname{E}_\theta [\hat\theta]+\operatorname{E}_\theta[\hat\theta]-\theta\right)^2\right]\\ &= \operatorname{E}_\theta\left[\left(\hat{\theta}-\operatorname{E}_\theta[\hat\theta]\right)^2 +2\left (\hat{\theta}-\operatorname{E}_\theta[\hat\theta] \right ) \left (\operatorname{E}_\theta[\hat\theta]-\theta \right )+\left( \operatorname{E}_\theta[\hat\theta]-\theta \right)^2\right] \\ &= \operatorname{E}_\theta\left[\left(\hat{\theta}-\operatorname{E}_\theta[\hat\theta]\right)^2\right]+\operatorname{E}_\theta\left[2 \left (\hat{\theta}-\operatorname{E}_\theta[\hat\theta] \right ) \left (\operatorname{E}_\theta[\hat\theta]-\theta \right ) \right] + \operatorname{E}_\theta\left [ \left(\operatorname{E}_\theta[\hat\theta]-\theta\right)^2 \right] \\ &= \operatorname{E}_\theta\left[\left(\hat{\theta}-\operatorname{E}_\theta[\hat\theta]\right)^2\right]+ 2 \left(\operatorname{E}_\theta[\hat\theta]-\theta\right) \operatorname{E}_\theta\left[\hat{\theta}-\operatorname{E}_\theta[\hat\theta] \right] + \left(\operatorname{E}_\theta[\hat\theta]-\theta\right)^2 && \operatorname{E}_\theta[\hat\theta]-\theta = \text{constant} \\ &= \operatorname{E}_\theta\left[\left(\hat{\theta}-\operatorname{E}_\theta[\hat\theta]\right)^2\right]+ 2 \left(\operatorname{E}_\theta [\hat\theta]-\theta\right) \left ( \operatorname{E}_\theta[\hat{\theta}]-\operatorname{E}_\theta[\hat\theta] \right )+ \left(\operatorname{E}_\theta[\hat\theta]-\theta\right)^2 && \operatorname{E}_\theta[\hat\theta] = \text{constant} \\ &= \operatorname{E}_\theta\left[\left(\hat\theta-\operatorname{E}_\theta[\hat\theta]\right)^2\right]+\left(\operatorname{E}_\theta [\hat\theta]-\theta\right)^2\\ &= \operatorname{Var}_\theta(\hat\theta)+ \operatorname{Bias}_\theta(\hat\theta,\theta)^2 \end{align}</math> An even shorter proof can be achieved using the well-known formula that for a random variable <math display="inline">X</math>, <math display="inline">\mathbb{E}(X^2) = \operatorname{Var}(X) + (\mathbb{E}(X))^2</math>. By substituting <math display="inline">X</math> with, <math display="inline">\hat\theta-\theta</math>, we have :<math display="block">\begin{aligned} \operatorname{MSE}(\hat{\theta}) &= \mathbb{E}[(\hat\theta-\theta)^2] \\ &= \operatorname{Var}(\hat{\theta} - \theta) + (\mathbb{E}[\hat\theta - \theta])^2 \\ &= \operatorname{Var}(\hat\theta) + \operatorname{Bias}^2(\hat\theta,\theta) \end{aligned}</math> But in real modeling case, MSE could be described as the addition of model variance, model bias, and irreducible uncertainty (see [[Bias–variance tradeoff]]). According to the relationship, the MSE of the estimators could be simply used for the [[Efficiency (statistics)|efficiency]] comparison, which includes the information of estimator variance and bias. This is called MSE criterion.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)