Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mixture model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Gaussian mixture model==== [[File:nonbayesian-gaussian-mixture.svg|right|250px|thumb|Non-Bayesian Gaussian mixture model using [[plate notation]]. Smaller squares indicate fixed parameters; larger circles indicate random variables. Filled-in shapes indicate known values. The indication [K] means a vector of size ''K''.]] A typical non-Bayesian [[Gaussian distribution|Gaussian]] mixture model looks like this: :<math> \begin{array}{lcl} K,N &=& \text{as above} \\ \phi_{i=1 \dots K}, \boldsymbol\phi &=& \text{as above} \\ z_{i=1 \dots N}, x_{i=1 \dots N} &=& \text{as above} \\ \theta_{i=1 \dots K} &=& \{ \mu_{i=1 \dots K}, \sigma^2_{i=1 \dots K} \} \\ \mu_{i=1 \dots K} &=& \text{mean of component } i \\ \sigma^2_{i=1 \dots K} &=& \text{variance of component } i \\ z_{i=1 \dots N} &\sim& \operatorname{Categorical}(\boldsymbol\phi) \\ x_{i=1 \dots N} &\sim& \mathcal{N}(\mu_{z_i}, \sigma^2_{z_i}) \end{array} </math> {{clear}} [[File:bayesian-gaussian-mixture.svg|right|300px|thumb|Bayesian Gaussian mixture model using [[plate notation]]. Smaller squares indicate fixed parameters; larger circles indicate random variables. Filled-in shapes indicate known values. The indication [K] means a vector of size ''K''.]] A Bayesian version of a [[Gaussian distribution|Gaussian]] mixture model is as follows: :<math> \begin{array}{lcl} K,N &=& \text{as above} \\ \phi_{i=1 \dots K}, \boldsymbol\phi &=& \text{as above} \\ z_{i=1 \dots N}, x_{i=1 \dots N} &=& \text{as above} \\ \theta_{i=1 \dots K} &=& \{ \mu_{i=1 \dots K}, \sigma^2_{i=1 \dots K} \} \\ \mu_{i=1 \dots K} &=& \text{mean of component } i \\ \sigma^2_{i=1 \dots K} &=& \text{variance of component } i \\ \mu_0, \lambda, \nu, \sigma_0^2 &=& \text{shared hyperparameters} \\ \mu_{i=1 \dots K} &\sim& \mathcal{N}(\mu_0, \lambda\sigma_i^2) \\ \sigma_{i=1 \dots K}^2 &\sim& \operatorname{Inverse-Gamma}(\nu, \sigma_0^2) \\ \boldsymbol\phi &\sim& \operatorname{Symmetric-Dirichlet}_K(\beta) \\ z_{i=1 \dots N} &\sim& \operatorname{Categorical}(\boldsymbol\phi) \\ x_{i=1 \dots N} &\sim& \mathcal{N}(\mu_{z_i}, \sigma^2_{z_i}) \end{array} </math><math></math> [[File:Parameter estimation process infinite Gaussian mixture model.webm|thumb|end=49|Animation of the clustering process for one-dimensional data using a Bayesian Gaussian mixture model where normal distributions are drawn from a [[Dirichlet process]]. The histograms of the clusters are shown in different colours. During the parameter estimation process, new clusters are created and grow on the data. The legend shows the cluster colours and the number of datapoints assigned to each cluster.]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)