Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Modular arithmetic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Advanced properties == Some of the more advanced properties of congruence relations are the following: * [[Fermat's little theorem]]: If {{math|''p''}} is prime and does not divide {{math|''a''}}, then {{math|''a''{{i sup|''p''β1}} β‘ 1 (mod ''p'')}}. * [[Euler's theorem]]: If {{math|''a''}} and {{math|''m''}} are coprime, then {{math|''a''{{i sup|''Ο''(''m'')}} β‘ 1 (mod ''m'')}}, where {{math|''Ο''}} is [[Euler's totient function]]. * A simple consequence of Fermat's little theorem is that if {{math|''p''}} is prime, then {{math|''a''<sup>β1</sup> β‘ ''a''{{i sup|''p''β2}} (mod ''p'')}} is the multiplicative inverse of {{math|0 < ''a'' < ''p''}}. More generally, from Euler's theorem, if {{math|''a''}} and {{math|''m''}} are coprime, then {{math|''a''{{i sup|β1}} β‘ ''a''{{i sup|''Ο''(''m'')β1}} (mod ''m'')}}. Hence, if {{math|''ax'' β‘ ''1'' (mod ''m'')}}, then {{math|''x'' β‘ ''a''{{i sup|''Ο''(''m'')β1}} (mod ''m'')}}. * Another simple consequence is that if {{math|''a'' β‘ ''b'' (mod ''Ο''(''m''))}}, where {{math|''Ο''}} is Euler's totient function, then {{math|''k''<sup>''a''</sup> β‘ ''k''<sup>''b''</sup> (mod ''m'')}} provided {{math|''k''}} is [[coprime]] with {{math|''m''}}. * [[Wilson's theorem]]: {{math|''p''}} is prime if and only if {{math|(''p'' β 1)! β‘ β1 (mod ''p'')}}. * [[Chinese remainder theorem]]: For any {{math|''a''}}, {{math|''b''}} and coprime {{math|''m''}}, {{math|''n''}}, there exists a unique {{math|''x'' (mod ''mn'')}} such that {{math|''x'' β‘ ''a'' (mod ''m'')}} and {{math|''x'' β‘ ''b'' (mod ''n'')}}. In fact, {{math|''x'' β‘ ''b m''<sub>''n''</sub><sup>β1</sup> ''m'' + ''a n''<sub>''m''</sub><sup>β1</sup> ''n'' (mod ''mn'')}} where {{math|''m''<sub>''n''</sub><sup>β1</sup>}} is the inverse of {{math|''m''}} modulo {{math|''n''}} and {{math|''n''<sub>''m''</sub><sup>β1</sup>}} is the inverse of {{math|''n''}} modulo {{math|''m''}}. * [[Lagrange's theorem (number theory)|Lagrange's theorem]]: If {{math|''p''}} is prime and {{math|''f'' (''x'') {{=}} ''a''<sub>0</sub> ''x''<sup>''d''</sup> + ... + ''a''<sub>''d''</sub>}} is a [[polynomial]] with integer coefficients such that {{mvar|p}} is not a divisor of {{math|''a''<sub>0</sub>}}, then the congruence {{math|''f'' (''x'') β‘ 0 (mod ''p'')}} has at most {{math|''d''}} non-congruent solutions. * [[Primitive root modulo n|Primitive root modulo {{math|''m''}}]]: A number {{math|''g''}} is a primitive root modulo {{math|''m''}} if, for every integer {{math|''a''}} coprime to {{math|''m''}}, there is an integer {{math|''k''}} such that {{math|''g''<sup>''k''</sup> β‘ ''a'' (mod ''m'')}}. A primitive root modulo {{math|''m''}} exists if and only if {{math|''m''}} is equal to {{math|2, 4, ''p''<sup>''k''</sup>}} or {{math| 2''p''<sup>''k''</sup>}}, where {{math|''p''}} is an odd prime number and {{math|''k''}} is a positive integer. If a primitive root modulo {{math|''m''}} exists, then there are exactly {{math|''Ο''(''Ο''(''m''))}} such primitive roots, where {{math|''Ο''}} is the Euler's totient function. * [[Quadratic residue]]: An integer {{math|''a''}} is a quadratic residue modulo {{math|''m''}}, if there exists an integer {{math|''x''}} such that {{math|''x''<sup>2</sup> β‘ ''a'' (mod ''m'')}}. [[Euler's criterion]] asserts that, if {{math|''p''}} is an odd prime, and {{mvar|a}} is not a multiple of {{mvar|p}}, then {{math|''a''}} is a quadratic residue modulo {{math|''p''}} if and only if *: {{math|''a''{{i sup|(''p''β1)/2}} β‘ 1 (mod ''p'')}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)