Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multi-index notation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof=== The proof follows from the [[power rule]] for the [[differential calculus|ordinary derivative]]; if ''Ξ±'' and ''β'' are in <math display="inline">\{0, 1, 2,\ldots\}</math>, then {{NumBlk||<math display="block"> \frac{d^\alpha}{dx^\alpha} x^\beta = \begin{cases} \frac{\beta!}{(\beta-\alpha)!} x^{\beta-\alpha} & \hbox{if}\,\, \alpha\le\beta, \\ 0 & \hbox{otherwise.} \end{cases}</math>|{{EquationRef|1}}}} Suppose <math>\alpha=(\alpha_1,\ldots, \alpha_n)</math>, <math>\beta=(\beta_1,\ldots, \beta_n)</math>, and <math>x=(x_1,\ldots, x_n)</math>. Then we have that <math display="block">\begin{align}\partial^\alpha x^\beta&= \frac{\partial^{\vert\alpha\vert}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}} x_1^{\beta_1} \cdots x_n^{\beta_n}\\ &= \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} x_1^{\beta_1} \cdots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}} x_n^{\beta_n}.\end{align}</math> For each <math display="inline">i</math> in <math display="inline">\{ 1, \ldots , n\}</math>, the function <math>x_i^{\beta_i}</math> only depends on <math>x_i</math>. In the above, each partial differentiation <math>\partial/\partial x_i</math> therefore reduces to the corresponding ordinary differentiation <math>d/dx_i</math>. Hence, from equation ({{EquationNote|1}}), it follows that <math>\partial^\alpha x^\beta</math> vanishes if <math display="inline">\alpha_i > \beta_i</math> for at least one <math display="inline">i</math> in <math display="inline">\{ 1, \ldots , n\}</math>. If this is not the case, i.e., if <math display="inline">\alpha \leq \beta</math> as multi-indices, then <math display="block"> \frac{d^{\alpha_i}}{dx_i^{\alpha_i}} x_i^{\beta_i} = \frac{\beta_i!}{(\beta_i-\alpha_i)!} x_i^{\beta_i-\alpha_i}</math> for each <math>i</math> and the theorem follows. [[Q.E.D.]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)