Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multivariable calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Theorems regarding multivariate limits and continuity === * All properties of linearity and superposition from single-variable calculus carry over to multivariate calculus. * '''Composition''': If <math>f: \mathbb{R}^n \to \mathbb{R}^m</math> and <math>g: \mathbb{R}^m \to \mathbb{R}^p</math> are both multivariate continuous functions at the points <math>x_0 \in \mathbb{R}^n</math> and <math>f(x_0) \in \mathbb{R}^m</math> respectively, then <math>g \circ f: \mathbb{R}^n \to \mathbb{R}^p</math> is also a multivariate continuous function at the point <math>x_0</math>. * '''Multiplication''': If <math>f: \mathbb{R}^n \to \mathbb{R}</math> and <math>g: \mathbb{R}^n \to \mathbb{R}</math> are both continuous functions at the point <math>x_0 \in \mathbb{R}^n</math>, then <math>fg: \mathbb{R}^n \to \mathbb{R}</math> is continuous at <math>x_0</math>, and <math>f/g : \mathbb{R}^n \to \mathbb{R}</math> is also continuous at <math>x_0</math> provided that <math>g(x_0) \neq 0</math>. * If <math>f: \mathbb{R}^n \to \mathbb{R}</math> is a continuous function at point <math>x_0 \in \mathbb{R}^n</math>, then <math>|f|</math> is also continuous at the same point. * If <math>f: \mathbb{R}^n \to \mathbb{R}^m</math> is [[Lipschitz continuous]] (with the appropriate normed spaces as needed) in the neighbourhood of the point <math>x_0 \in \mathbb{R}^n</math>, then <math>f</math> is multivariate continuous at <math>x_0</math>. {{Collapse top|Proof|expand=true}} From the Lipschitz continuity condition for <math>f</math> we have {{NumBlk|:|<math>|f(s(t))-f(s(t_0))| \leq K|s(t)-s(t_0)|</math>|{{EquationRef|8}}}} where <math>K</math> is the Lipschitz constant. Note also that, as <math>s(t)</math> is continuous at <math>t_0</math>, for every <math>\delta > 0</math> there exists a <math>\epsilon > 0</math> such that <math>|s(t)-s(t_0)| < \delta</math> <math>\forall |t-t_0| < \epsilon</math>. Hence, for every <math>\alpha > 0</math>, choose <math>\delta = \frac{\alpha}{K}</math>; there exists an <math>\epsilon > 0</math> such that for all <math>t</math> satisfying <math>|t-t_0| < \epsilon</math>, <math>|s(t)-s(t_0)| < \delta</math>, and <math>|f(s(t)) - f(s(t_0))| \leq K|s(t)-s(t_0)| < K\delta = \alpha</math>. Hence <math>\lim_{t \to t_0} f(s(t))</math> converges to <math>f(s(t_0))</math> regardless of the precise form of <math>s(t)</math>. {{Collapse bottom}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)