Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multivariate random variable
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Invertible mappings=== More generally we can study invertible mappings of random vectors.<ref name=Lapidoth>{{cite book |last=Taboga |first=Marco |title=Lectures on Probability Theory and Mathematical Statistics |publisher= CreateSpace Independent Publishing Platform |year=2017 |isbn=978-1981369195 }}</ref>{{rp|p.284β285}} Let <math>g</math> be a one-to-one mapping from an open subset <math>\mathcal{D}</math> of <math>\mathbb{R}^n</math> onto a subset <math>\mathcal{R}</math> of <math>\mathbb{R}^n</math>, let <math>g</math> have continuous partial derivatives in <math>\mathcal{D}</math> and let the [[Jacobian matrix and determinant|Jacobian determinant]] <math>\det\left (\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right )</math> of <math>g</math> be zero at no point of <math>\mathcal{D}</math>. Assume that the real random vector <math>\mathbf{X}</math> has a probability density function <math>f_{\mathbf{X}}(\mathbf{x})</math> and satisfies <math> P(\mathbf{X} \in \mathcal{D}) = 1</math>. Then the random vector <math>\mathbf{Y}=g(\mathbf{X})</math> is of probability density :<math>\left. f_{\mathbf{Y}}(\mathbf{y})=\frac{f_{\mathbf{X}}(\mathbf{x})}{\left |\det\left (\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right )\right |} \right |_{\mathbf{x}=g^{-1}(\mathbf{y})} \mathbf{1}(\mathbf{y} \in R_\mathbf{Y})</math> where <math>\mathbf{1}</math> denotes the [[indicator function]] and set <math>R_\mathbf{Y} = \{ \mathbf{y} = g(\mathbf{x}): f_{\mathbf{X}}(\mathbf{x}) > 0 \} \subseteq \mathcal{R} </math> denotes support of <math>\mathbf{Y}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)