Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Navier–Stokes equations
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Compressible flow== Remark: here, the deviatoric stress tensor is denoted <math display="inline">\boldsymbol{\tau}</math> as it was in the [[#General continuum equations|general continuum equations]] and in the [[#Incompressible flow|incompressible flow section]]. The compressible momentum Navier–Stokes equation results from the following assumptions on the Cauchy stress tensor:<ref name="Batchelor_142_148"/> <ul> <li>the stress is '''[[Galilean invariance|Galilean invariant]]''': it does not depend directly on the flow velocity, but only on spatial derivatives of the flow velocity. So the stress variable is the tensor gradient <math display="inline">\nabla \mathbf{u}</math>, or more simply the [[strain-rate tensor|rate-of-strain tensor]]: <math display="inline">\boldsymbol{\varepsilon}\left(\nabla \mathbf{u}\right) \equiv \frac{1}{2}\nabla \mathbf{u} + \frac{1}{2} \left(\nabla \mathbf{u}\right)^T</math></li> <li>the deviatoric stress is '''linear''' in this variable: <math display="inline">\boldsymbol{\sigma}(\boldsymbol \varepsilon) = -p \mathbf I + \mathbf{C} : \boldsymbol \varepsilon</math>, where <math display="inline">p</math> is independent on the strain rate tensor, <math display="inline">\mathbf{C}</math> is the fourth-order tensor representing the constant of proportionality, called the viscosity or [[elasticity tensor]], and : is the [[Dyadics#Double-dot product|double-dot product]].</li> <li>the fluid is assumed to be [[isotropic]], as with gases and simple liquids, and consequently <math display="inline">\mathbf{C}</math> is an isotropic tensor; furthermore, since the deviatoric stress tensor is symmetric, by [[Helmholtz decomposition]] it can be expressed in terms of two scalar [[Lamé parameters]], the [[second viscosity]] <math display="inline">\lambda</math> and the [[dynamic viscosity]] <math display="inline">\mu</math>, as it is usual in [[linear elasticity]]: {{Equation box 1 |indent=: |title='''Linear stress [[constitutive equation]]''' ''(expression similar to the one for elastic solid)'' |equation=<math>\boldsymbol \sigma(\boldsymbol \varepsilon) = - p \mathbf I + \lambda \operatorname{tr} (\boldsymbol \varepsilon) \mathbf I + 2 \mu \boldsymbol \varepsilon</math> |cellpadding |border |border colour = #FF0000 |background colour = #DCDCDC }} where <math display="inline">\mathbf{I}</math> is the [[Identity matrix|identity tensor]], and <math display="inline">\operatorname{tr} (\boldsymbol \varepsilon)</math> is the [[trace (linear algebra)|trace]] of the rate-of-strain tensor. So this decomposition can be explicitly defined as: <math display="block">\boldsymbol \sigma = -p \mathbf I + \lambda (\nabla\cdot\mathbf{u}) \mathbf I + \mu \left(\nabla\mathbf{u} + ( \nabla\mathbf{u} )^\mathrm{T}\right).</math> </li> </ul> Since the [[trace (linear algebra)|trace]] of the rate-of-strain tensor in three dimensions is the [[divergence]] (i.e. rate of expansion) of the flow: <math display="block">\operatorname{tr} (\boldsymbol \varepsilon) = \nabla\cdot\mathbf{u}.</math> Given this relation, and since the trace of the identity tensor in three dimensions is three: <math display="block">\operatorname{tr} (\boldsymbol I) = 3.</math> the trace of the stress tensor in three dimensions becomes: <math display="block">\operatorname{tr} (\boldsymbol \sigma ) = -3p + (3 \lambda + 2 \mu )\nabla\cdot\mathbf{u}.</math> So by alternatively decomposing the stress tensor into '''isotropic''' and '''deviatoric''' parts, as usual in fluid dynamics:<ref>{{cite book |last1=Chorin |first1=Alexandre E. |last2=Marsden |first2=Jerrold E. |date=1993 |title=A Mathematical Introduction to Fluid Mechanics |page=33}}</ref> <math display="block">\boldsymbol \sigma = - \left[ p - \left(\lambda + \tfrac23 \mu\right) \left(\nabla\cdot\mathbf{u}\right) \right] \mathbf I + \mu \left(\nabla\mathbf{u} + \left( \nabla\mathbf{u} \right)^\mathrm{T} - \tfrac23 \left(\nabla\cdot\mathbf{u}\right)\mathbf I\right)</math> Introducing the [[volume viscosity|bulk viscosity]] <math display="inline">\zeta</math>, <math display="block"> \zeta \equiv \lambda + \tfrac23 \mu ,</math> we arrive to the linear [[constitutive equation]] in the form usually employed in [[thermal hydraulics]]:<ref name=Batchelor_142_148/> {{Equation box 1 |indent=: |title='''Linear stress constitutive equation''' ''(expression used for fluids)'' |equation=<math>\boldsymbol \sigma = -[ p - \zeta (\nabla\cdot\mathbf{u})] \mathbf I + \mu \left[\nabla\mathbf{u} + ( \nabla\mathbf{u} )^\mathrm{T} - \tfrac23 (\nabla\cdot\mathbf{u})\mathbf I\right]</math> |cellpadding |border |border colour = #FF0000 |background colour = #DCDCDC }} which can also be arranged in the other usual form:<ref>Bird, Stewart, Lightfoot, Transport Phenomena, 1st ed., 1960, eq. (3.2-11a)</ref> <math display="block">\boldsymbol \sigma = -p \mathbf I + \mu \left(\nabla\mathbf{u} + ( \nabla\mathbf{u} )^\mathrm{T}\right) + \left(\zeta - \frac 2 3 \mu \right) (\nabla\cdot\mathbf{u}) \mathbf I.</math> Note that in the compressible case the pressure is no more proportional to the [[hydrostatic stress|isotropic stress]] term, since there is the additional bulk viscosity term: <math>p = - \frac 1 3 \operatorname{tr} (\boldsymbol \sigma) + \zeta (\nabla\cdot\mathbf{u})</math> and the [[deviatoric stress tensor]] <math>\boldsymbol \sigma'</math> is still coincident with the shear stress tensor <math>\boldsymbol \tau</math> (i.e. the deviatoric stress in a Newtonian fluid has no normal stress components), and it has a compressibility term in addition to the incompressible case, which is proportional to the shear viscosity: <math>\boldsymbol \sigma' = \boldsymbol \tau = \mu \left[\nabla\mathbf{u} + ( \nabla\mathbf{u} )^\mathrm{T} - \tfrac23 (\nabla\cdot\mathbf{u})\mathbf I\right]</math> Both bulk viscosity <math display="inline">\zeta</math> and dynamic viscosity <math display="inline">\mu</math> need not be constant – in general, they depend on two thermodynamics variables if the fluid contains a single chemical species, say for example, pressure and temperature. Any equation that makes explicit one of these [[transport coefficient]] in the [[conservation variable]]s is called an [[equation of state]].<ref name="Batchelor 1967 p. 165"/> The most general of the Navier–Stokes equations become {{Equation box 1 |indent=: |title='''Navier–Stokes momentum equation''' (''convective form'') |equation=<math> \rho \frac{\mathrm{D} \mathbf{u}}{\mathrm{D} t} = \rho \left( \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = - \nabla p + \nabla \cdot \left\{ \mu \left[\nabla\mathbf{u} + ( \nabla\mathbf{u} )^\mathrm{T} - \tfrac23 (\nabla\cdot\mathbf{u})\mathbf I\right] \right\} + \nabla[\zeta (\nabla\cdot\mathbf{u})] + \rho\mathbf{a} .</math> |cellpadding |border |border colour = #FF0000 |background colour = #DCDCDC }} in index notation, the equation can be written as<ref name="landau">Landau, Lev Davidovich, and Evgenii Mikhailovich Lifshitz. Fluid mechanics: Landau And Lifshitz: course of theoretical physics, Volume 6. Vol. 6. Elsevier, 2013.</ref> {{Equation box 1 |indent=: |title='''Navier–Stokes momentum equation''' (''index notation'') |equation=<math> \rho \left(\frac{\partial u_i}{\partial t} + u_k \frac{\partial u_i}{\partial x_k}\right) = - \frac{\partial p}{\partial x_i} + \frac{\partial }{\partial x_k}\left[\mu \left(\frac{\partial u_i}{\partial x_k}+ \frac{\partial u_k}{\partial x_i}-\frac{2}{3}\delta_{ik} \frac{\partial u_l}{\partial x_l}\right)\right] + \frac{\partial }{\partial x_i}\left(\zeta \frac{\partial u_\ell}{\partial x_\ell}\right)+\rho a_i.</math> |cellpadding |border |border colour = #FF0000 |background colour = #DCDCDC }} The corresponding equation in conservation form can be obtained by considering that, given the mass [[continuity equation]], the left side is equivalent to: : <math> \rho \frac{\mathrm{D} \mathbf{u}}{\mathrm{D} t} = \frac {\partial}{\partial t} (\rho \mathbf u) + \nabla \cdot (\rho \mathbf u \otimes \mathbf u)</math> to give finally: {{Equation box 1 |indent=: |title='''Navier–Stokes momentum equation''' (''conservative form'') |equation=<math> \frac {\partial}{\partial t} (\rho \mathbf u) + \nabla \cdot \left(\rho \mathbf u \otimes \mathbf u + [p - \zeta (\nabla\cdot\mathbf{u})] \mathbf I - \mu \left[\nabla\mathbf{u} + ( \nabla\mathbf{u} )^\mathrm{T} - \tfrac23 (\nabla\cdot\mathbf{u}) \mathbf I\right] \right) = \rho\mathbf{a} .</math> |cellpadding |border |border colour = #FF0000 |background colour = #DCDCDC }} Apart from its dependence of pressure and temperature, the second viscosity coefficient also depends on the process, that is to say, the second viscosity coefficient is not just a material property. Example: in the case of a sound wave with a definitive frequency that alternatively compresses and expands a fluid element, the second viscosity coefficient depends on the frequency of the wave. This dependence is called the ''dispersion''. In some cases, the [[volume viscosity|second viscosity]] <math display="inline">\zeta</math> can be assumed to be constant in which case, the effect of the volume viscosity <math display="inline">\zeta</math> is that the mechanical pressure is not equivalent to the thermodynamic [[pressure]]:<ref>Landau & Lifshitz (1987) pp. 44–45, 196</ref> as demonstrated below. <math display="block">\nabla\cdot(\nabla\cdot \mathbf u)\mathbf I=\nabla (\nabla \cdot \mathbf u),</math><math display="block"> \bar{p} \equiv p - \zeta \, \nabla \cdot \mathbf{u} ,</math> However, this difference is usually neglected most of the time (that is whenever we are not dealing with processes such as sound absorption and attenuation of shock waves,<ref>White (2006) p. 67.</ref> where second viscosity coefficient becomes important) by explicitly assuming <math display="inline">\zeta = 0</math>. The assumption of setting <math display="inline">\zeta = 0</math> is called as the '''Stokes hypothesis'''.<ref>Stokes, G. G. (1845). On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids.</ref> The validity of Stokes hypothesis can be demonstrated for monoatomic gas both experimentally and from the kinetic theory;<ref>Vincenti, W. G., Kruger Jr., C. H. (1975). Introduction to physical gas dynamic. Introduction to physical gas dynamics/Huntington.</ref> for other gases and liquids, Stokes hypothesis is generally incorrect. With the Stokes hypothesis, the Navier–Stokes equations become {{Equation box 1 |indent=: |title='''Navier–Stokes momentum equation''' (''convective form, Stokes hypothesis'') |equation=<math> \rho \frac{\mathrm{D} \mathbf{u}}{\mathrm{D} t} = \rho \left( \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = - \nabla p + \nabla \cdot \left\{ \mu \left[\nabla\mathbf{u} + ( \nabla\mathbf{u} )^\mathrm{T} - \tfrac23 (\nabla\cdot\mathbf{u})\mathbf I\right] \right\} + \rho\mathbf{a} .</math> |cellpadding |border |border colour = #FF0000 |background colour = #DCDCDC }} If the dynamic {{mvar|μ}} and bulk <math>\zeta</math> viscosities are assumed to be uniform in space, the equations in convective form can be simplified further. By computing the divergence of the stress tensor, since the divergence of tensor <math display="inline">\nabla \mathbf{u}</math> is <math display="inline">\nabla^2 \mathbf{u}</math> and the divergence of tensor <math display="inline">\left(\nabla \mathbf{u}\right)^{\mathrm T}</math> is <math display="inline">\nabla \left(\nabla \cdot \mathbf{u}\right) </math>, one finally arrives to the compressible Navier–Stokes momentum equation:<ref>Batchelor (1967) pp. 147 & 154.</ref> {{Equation box 1 |indent=: |title='''Navier–Stokes momentum equation''' with uniform shear and bulk viscosities (''convective form'') |equation=<math> \frac {D \mathbf{u}}{D t} = - \frac 1 \rho \nabla p + \nu \, \nabla^2 \mathbf u + (\tfrac13 \nu + \xi) \, \nabla (\nabla\cdot\mathbf{u}) + \mathbf{a} .</math> |cellpadding |border |border colour = #FF0000 |background colour = #DCDCDC }} where <math display="inline">\frac{\mathrm{D}}{\mathrm{D}t} </math> is the [[material derivative]]. <math>\nu=\frac \mu \rho</math> is the shear [[kinematic viscosity]] and <math>\xi=\frac \zeta \rho</math> is the bulk kinematic viscosity. The left-hand side changes in the conservation form of the Navier–Stokes momentum equation. By bringing the operator on the flow velocity on the left side, one also has: {{Equation box 1 |indent=: |title='''Navier–Stokes momentum equation''' with uniform shear and bulk viscosities (''convective form'') |equation=<math> \left(\frac {\partial}{\partial t} + \mathbf u \cdot \nabla - \nu \, \nabla^2 - (\tfrac13 \nu + \xi) \, \nabla (\nabla\cdot) \right)\mathbf{u} = - \frac 1\rho \nabla p + \mathbf{a} .</math> |cellpadding |border |border colour = #FF0000 |background colour = #DCDCDC }} The convective acceleration term can also be written as <math display="block"> \mathbf u\cdot\nabla\mathbf u = (\nabla\times\mathbf u)\times\mathbf u + \tfrac12\nabla\mathbf u^2,</math> where the vector <math display="inline"> (\nabla \times \mathbf{u}) \times \mathbf{u}</math> is known as the [[Lamb vector]]. For the special case of an [[incompressible flow]], the pressure constrains the flow so that the volume of [[fluid element]]s is constant: [[isochoric process|isochoric flow]] resulting in a [[Solenoidal vector field|solenoidal]] velocity field with <math display="inline"> \nabla \cdot \mathbf{u} = 0</math>.<ref>Batchelor (1967) p. 75.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)