Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Neutron
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Free neutron === {{main|Free neutron decay}} Neutrons are tightly bound in atomic nuclei, requiring MeV sized energies to bust out. Once free, neutrons decay in a quarter of an hour on average. Thus free neutrons are rare compared to other components of atoms: electrons are freed by heating a light bulb filament and protons are freed in rapid hydrogen gas combustion. Moreover, once freed in say a nuclear reactor, the charge-free neutrons are difficult to direct, confine, or detect.<ref>{{Cite journal |last1=Dubbers |first1=Dirk |last2=Schmidt |first2=Michael G. |date=2011-10-24 |title=The neutron and its role in cosmology and particle physics |url=https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.83.1111 |journal=Reviews of Modern Physics |volume=83 |issue=4 |pages=1111β1171 |doi=10.1103/RevModPhys.83.1111|arxiv=1105.3694 |bibcode=2011RvMP...83.1111D }}</ref> The neutron has a mean-square [[radius]] of about {{val|0.8|e=-15|ul=m}}, or {{val|0.8|ul=fm}},<ref name="Povh">{{cite book |last1=Povh |first1=B. |last2=Rith |first2=K. |last3=Scholz |first3=C. |last4=Zetsche |first4=F. |title=Particles and Nuclei: An Introduction to the Physical Concepts |location=Berlin |publisher=Springer-Verlag |pages=73 |year=2002 |isbn=978-3-540-43823-6}}</ref> and it is a [[spin-Β½|spin-{{sfrac|1|2}}]] [[fermion]].<ref name=Basdevant2> {{cite book |author1=Basdevant, J.-L. |author2=Rich, J. |author3=Spiro, M. |year=2005 |title=Fundamentals in Nuclear Physics |page=155 |publisher=[[Springer (publisher)|Springer]] |isbn=978-0-387-01672-6 }}</ref> The neutron has no measurable electric charge. With its positive electric charge, the proton is directly influenced by [[electric field]]s, whereas the neutron is unaffected by electric fields.<ref name="Ari">{{cite journal |last1=Arimoto |first1=Y. |last2=Geltenbort |first2=S. |year=2012 |title=Demonstration of focusing by a neutron accelerator |journal=[[Physical Review A]] |volume=86 |issue=2 |pages=023843 |url=http://www.rri.kyoto-u.ac.jp/news-en/4964 |doi=10.1103/PhysRevA.86.023843 |access-date=May 9, 2015 |bibcode=2012PhRvA..86b3843A |display-authors=etal |url-access=subscription |archive-date=January 18, 2015 |archive-url=https://web.archive.org/web/20150118105137/http://www.rri.kyoto-u.ac.jp/news-en/4964 |url-status=live }}</ref> The neutron has a [[neutron magnetic moment|magnetic moment]], however, so it is influenced by [[magnetic field]]s.<ref name="Oku">{{cite journal |last1=Oku |first1=T. |last2=Suzuki |first2=J.|year=2007 |title=Highly polarized cold neutron beam obtained by using a quadrupole magnet |journal=[[Physica B]] |volume=397 |issue=1β2 |pages=188β191 |doi=10.1016/j.physb.2007.02.055 |bibcode = 2007PhyB..397..188O |display-authors=etal}}</ref> The specific properties of the neutron are described below in the [[#Intrinsic properties|Intrinsic properties section]]. Outside the nucleus, free neutrons undergo beta decay with a [[mean lifetime]] of about 14 minutes, 38 seconds,<ref>R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys. 2022, 083C01 (2022) and 2023 update. https://pdg.lbl.gov/2023/listings/rpp2023-list-n.pdf {{Webarchive|url=https://web.archive.org/web/20230925091703/https://pdg.lbl.gov/2023/listings/rpp2023-list-n.pdf |date=2023-09-25 }}. Gives value of 878.4 Β± 0.5s; half-life is not given.</ref> corresponding to a [[half-life]] of about 10 minutes, 11 s. The mass of the neutron is greater than that of the proton by {{val|1.29332||ul=MeV/c2}},<ref name=ByrneOverview/> hence the neutron's mass provides energy sufficient for the creation of the proton, electron, and anti-neutrino. In the decay process, the proton, electron, and electron anti-neutrino conserve the energy, charge, and [[lepton number]] of the neutron.<ref name=LifetimeReview2011>{{Cite journal |last1=Wietfeldt |first1=Fred E. |last2=Greene |first2=Geoffrey L. |date=2011-11-03 |title=Colloquium : The neutron lifetime |url=https://link.aps.org/doi/10.1103/RevModPhys.83.1173 |journal=Reviews of Modern Physics |language=en |volume=83 |issue=4 |pages=1173β1192 |doi=10.1103/RevModPhys.83.1173 |bibcode=2011RvMP...83.1173W |issn=0034-6861}}</ref> The electron can acquire a kinetic energy up to {{val|0.782|0.013|u=MeV}}.<ref name=ByrneOverview>{{Cite book |last=Byrne |first=J |title=Quark-Mixing, CKM-Unitarity |date=2003-12-09 |editor-last=Abele |editor-first=Hartmut |chapter=An Overview of Neutron Decay |arxiv=hep-ph/0312124 |editor-last2=Mund |editor-first2=Daniela }}</ref> Different experimental methods for measuring the neutron's lifetime, the "bottle" and "beam" methods, produce slightly different values.<ref>{{Cite journal |last1=Czarnecki |first1=Andrzej |last2=Marciano |first2=William J. |last3=Sirlin |first3=Alberto |date=2018-05-16 |title=Neutron Lifetime and Axial Coupling Connection |url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.202002 |journal=Physical Review Letters |volume=120 |issue=20 |pages=202002 |doi=10.1103/PhysRevLett.120.202002|pmid=29864332 |arxiv=1802.01804 |bibcode=2018PhRvL.120t2002C }}</ref><ref name=Wolchover-2018-02-13-Quanta>{{cite web |last=Wolchover |first=Natalie |date=13 February 2018 |title=Neutron lifetime puzzle deepens, but no dark matter seen |magazine=[[Quanta Magazine]] |access-date=31 July 2018 |url=https://www.quantamagazine.org/neutron-lifetime-puzzle-deepens-but-no-dark-matter-seen-20180213/ |archive-date=30 July 2018 |archive-url=https://web.archive.org/web/20180730080707/https://www.quantamagazine.org/neutron-lifetime-puzzle-deepens-but-no-dark-matter-seen-20180213/ |url-status=live }}</ref> The "bottle" method employs "cold" neutrons trapped in a bottle, while the "beam" method employs energetic neutrons in a particle beam. The measurements by the two methods have not been converging with time. The lifetime from the bottle method is presently 877.75 s<ref>{{Cite web|date=2021-10-13|title=How Long Does a Neutron Live?|url=https://www.caltech.edu/about/news/how-long-does-a-neutron-live|access-date=2021-10-14|website=California Institute of Technology|language=en|archive-date=2021-10-13|archive-url=https://web.archive.org/web/20211013190528/https://www.caltech.edu/about/news/how-long-does-a-neutron-live|url-status=live}}</ref><ref name=Gonzalez-2021>{{Cite journal|last1=UCNΟ Collaboration|last2=Gonzalez|first2=F. M.|last3=Fries|first3=E. M.|last4=Cude-Woods|first4=C.|last5=Bailey|first5=T.|last6=Blatnik|first6=M.|last7=Broussard|first7=L. J.|last8=Callahan|first8=N. B.|last9=Choi|first9=J. H.|last10=Clayton|first10=S. M.|last11=Currie|first11=S. A.|date=2021-10-13|title=Improved Neutron Lifetime Measurement with UCNΟ|url=https://par.nsf.gov/servlets/purl/10304438|journal=Physical Review Letters|volume=127|issue=16|page=162501|arxiv=2106.10375|doi=10.1103/PhysRevLett.127.162501|pmid=34723594|bibcode=2021PhRvL.127p2501G|s2cid=235490073|access-date=2024-04-01|archive-date=2024-04-01|archive-url=https://web.archive.org/web/20240401134040/https://par.nsf.gov/servlets/purl/10304438|url-status=live}}</ref> which is 10 seconds below the value from the beam method of 887.7 s.<ref>{{Cite journal|last=Anonymous|date=2013-11-27|title=Discrepancy in Neutron Lifetime Still Unresolved|url=https://physics.aps.org/articles/v6/s150|journal=Physics|language=en|volume=6|doi=10.1103/Physics.6.s150|bibcode=2013PhyOJ...6S.150.|access-date=2024-04-01|archive-date=2023-08-18|archive-url=https://web.archive.org/web/20230818212949/https://physics.aps.org/articles/v6/s150|url-status=live}}</ref> A small fraction (about one per thousand) of free neutrons decay with the same products, but add an extra particle in the form of an emitted gamma ray:<ref name=Fisher-2005>{{Cite journal|last1=Fisher|first1=BM|display-authors=etal |title=Detecting the Radiative Decay Mode of the Neutron|journal=J. Res. Natl. Inst. Stand. Technol.|volume=110|year=2005|issue=4 |pages=421β425|doi=10.6028/jres.110.064|pmid=27308161 |pmc=4852828 }}</ref> : {{math|{{SubatomicParticle|Neutron0}} β {{SubatomicParticle|Proton+}} + {{SubatomicParticle|Electron}} + {{SubatomicParticle|Electron antineutrino}} + {{SubatomicParticle|gamma}}}} Called a "radiative decay mode" of the neutron, the gamma ray may be thought of as resulting from an "internal [[bremsstrahlung]]" that arises from the electromagnetic interaction of the emitted beta particle with the proton.<ref name=Fisher-2005/> A smaller proportion of free neutrons (about four per million) decay in so-called "two-body (neutron) decays", in which a proton, electron and antineutrino are produced as usual, but the electron fails to gain the energy that is necessary for it to escape the proton ({{val|13.6|ul=eV}}, the [[ionization energy]] of [[hydrogen]]), and therefore remains bound to it, forming a neutral [[hydrogen atom]] (one of the "two bodies"). In this type of free neutron decay, almost all of the neutron [[decay energy]] is carried off by the antineutrino (the other "body"). (The hydrogen atom recoils with a speed of only about (decay energy)/(hydrogen rest energy) times the speed of light, or {{val|250|ul=km/s}}.)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)