Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Newtonian dynamics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Constraints and internal coordinates== In some cases the motion of the particles with the masses <math>\displaystyle m_1,\,\ldots,\,m_N</math> can be constrained. Typical [[constraint algorithm|constraints]] look like scalar equations of the form {{NumBlk|:|<math>\displaystyle\varphi_i(\mathbf r_1,\ldots,\mathbf r_N)=0,\quad i=1,\,\ldots,\,K</math>.|{{EquationRef|5}}}} Constraints of the form ({{EquationNote|5}}) are called [[Holonomic constraints|holonomic]] and [[Scleronomous|scleronomic]]. In terms of the radius-vector <math>\displaystyle\mathbf r</math> of the Newtonian dynamical system ({{EquationNote|3}}) they are written as {{NumBlk|:|<math>\displaystyle\varphi_i(\mathbf r)=0,\quad i=1,\,\ldots,\,K</math>.|{{EquationRef|6}}}} Each such constraint reduces by one the number of degrees of freedom of the Newtonian dynamical system ({{EquationNote|3}}). Therefore, the constrained system has <math>\displaystyle n=3\,N-K</math> degrees of freedom. '''Definition'''. The constraint equations ({{EquationNote|6}}) define an <math>\displaystyle n</math>-dimensional [[manifold]] <math>\displaystyle M</math> within the configuration space of the Newtonian dynamical system ({{EquationNote|3}}). This manifold <math>\displaystyle M</math> is called the configuration space of the constrained system. Its tangent bundle <math>\displaystyle TM</math> is called the phase space of the constrained system. Let <math>\displaystyle q^1,\,\ldots,\,q^n</math> be the internal coordinates of a point of <math>\displaystyle M</math>. Their usage is typical for the [[Lagrangian mechanics]]. The radius-vector <math>\displaystyle\mathbf r</math> is expressed as some definite function of <math>\displaystyle q^1,\,\ldots,\,q^n</math>: {{NumBlk|:|<math>\displaystyle\mathbf r=\mathbf r(q^1,\,\ldots,\,q^n) </math>.|{{EquationRef|7}}}} The vector-function ({{EquationNote|7}}) resolves the constraint equations ({{EquationNote|6}}) in the sense that upon substituting ({{EquationNote|7}}) into ({{EquationNote|6}}) the equations ({{EquationNote|6}}) are fulfilled identically in <math>\displaystyle q^1,\,\ldots,\,q^n</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)