Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
No-go theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Quantum field theory and string theory === * [[Weinberg–Witten theorem]] states that massless particles (either composite or elementary) with spin <math>\; J > \tfrac{1}{2} \;</math> cannot carry a [[Lorentz covariance|Lorentz-covariant]] current, while massless particles with spin <math>\; J > 1 \;</math> cannot carry a Lorentz-covariant [[Stress–energy tensor|stress-energy]]. It is usually interpreted to mean that the [[graviton]] {{nowrap|(<math>\; J = 2 \;</math>)}} in a relativistic [[quantum field theory]] cannot be a composite particle. * [[Nielsen–Ninomiya theorem]] limits when it is possible to formulate a [[chiral theory|chiral]] [[Lattice gauge theory|lattice theory]] for [[fermions]]. * [[Haag's theorem]] states that the [[interaction picture]] does not exist in an interacting, relativistic, [[quantum field theory]] (QFT).<ref>{{cite journal |last=Haag |first=Rudolf |year=1955 |title=On quantum field theories |journal=Matematisk-fysiske Meddelelser |volume=29 |page=12 |url=http://cdsweb.cern.ch/record/212242/files/p1.pdf}}</ref><ref name=Oldofredi2018/> * [[Hegerfeldt's theorem]] implies that localizable free particles are incompatible with [[causality]] in [[relativistic quantum theory]].<ref name=Oldofredi2018/> * [[Coleman–Mandula theorem]] states that "space-time and internal symmetries cannot be combined in any but a trivial way". * [[Haag–Łopuszański–Sohnius theorem]] is a generalisation of the [[Coleman–Mandula theorem]]. * [[Goddard–Thorn theorem]] * Maldacena–Nunez no-go theorem: any [[compactification (physics)|compactification]] of [[type II string theory|type IIB]] string theory on an internal [[compact space|compact]] space with no [[D-brane|brane]] sources will necessarily have a trivial [[warped geometry|warp factor]] and trivial [[flux]]es.<ref>{{cite book|last1=Becker|first1=K.|author-link1=|last2=Becker|first2=M.|author-link2=Melanie Becker|last3=Schwarz|first3=J.H.|author-link3=John Henry Schwarz|date=2007|title=String Theory and M-Theory|url=|doi=|location=Cambridge|publisher=Cambridge University Press|chapter=10|pages=480–482|isbn=978-0521860697}}</ref> *[[Reeh–Schlieder theorem]]<ref name=Oldofredi2018/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)