Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Observability
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Related concepts === ==== Observability index ==== The ''observability index'' <math>v</math> of a linear time-invariant discrete system is the smallest natural number for which the following is satisfied: <math>\text{rank}{(\mathcal{O}_v)} = \text{rank}{(\mathcal{O}_{v+1})}</math>, where :<math> \mathcal{O}_v=\begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{v-1} \end{bmatrix}.</math> ==== Unobservable subspace ==== The ''unobservable subspace'' <math>N</math> of the linear system is the kernel of the linear map <math>G</math> given by<ref name=":1">Sontag, E.D., "Mathematical Control Theory", Texts in Applied Mathematics, 1998</ref><blockquote><math> \begin{align} G \colon \mathbb{R}^{n} &\rightarrow \mathcal{C}(\mathbb{R};\mathbb{R}^n) \\ x(0) &\mapsto C e^{A t} x(0) \end{align} </math></blockquote>where <math>\mathcal{C}(\mathbb{R};\mathbb{R}^n)</math> is the set of continuous functions from <math>\mathbb{R}</math> to <math>\mathbb{R}^n </math>. <math>N</math> can also be written as <ref name=":1" /> :<math> N = \bigcap_{k=0}^{n-1} \ker(CA^k)= \ker{\mathcal{O}} </math> Since the system is observable if and only if <math>\operatorname{rank}(\mathcal{O}) = n</math>, the system is observable if and only if <math>N</math> is the zero subspace. The following properties for the unobservable subspace are valid:<ref name=":1" /> *<math> N \subset Ke(C) </math> *<math> A(N) \subset N </math> *<math> N= \bigcup \{ S \subset R^n \mid S \subset Ke(C), A(S) \subset N \} </math> ==== Detectability ==== A slightly weaker notion than observability is ''detectability''. A system is detectable if all the unobservable states are stable.<ref>{{Cite web | url=http://www.ece.rutgers.edu/~gajic/psfiles/chap5traCO.pdf | title=Controllability and Observability | access-date=2024-05-19}}</ref> Detectability conditions are important in the context of [[Sensor Networks|sensor networks]].<ref>{{Cite journal|last1=Li|first1=W.|last2=Wei|first2=G.|last3=Ho|first3=D. W. C.|last4=Ding|first4=D.|date=November 2018|title=A Weightedly Uniform Detectability for Sensor Networks|journal=IEEE Transactions on Neural Networks and Learning Systems|volume=29|issue=11|pages=5790β5796|doi=10.1109/TNNLS.2018.2817244|pmid=29993845|s2cid=51615852}}</ref><ref>{{Cite journal|last1=Li|first1=W.|last2=Wang|first2=Z.|last3=Ho|first3=D. W. C.|last4=Wei|first4=G.|date=2019|title=On Boundedness of Error Covariances for Kalman Consensus Filtering Problems|journal=IEEE Transactions on Automatic Control|volume=65|issue=6|pages=2654β2661|doi=10.1109/TAC.2019.2942826|s2cid=204196474}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)