Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Optical flow
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Parametric Models ==== Instead of applying the regularization constraint on a point by point basis as per a regularized model, one can group pixels into regions and estimate the motion of these regions. This is known as a ''parametric model'', since the motion of these regions is [[parameter|parameterized]]. In formulating optical flow estimation in this way, one makes the assumption that the motion field in each region be fully characterised by a set of parameters. Therefore, the goal of a parametric model is to estimate the motion parameters that minimise a loss function which can be written as, :<math> \hat{\boldsymbol{\alpha}} = \arg \min_{\boldsymbol{\alpha}} \sum_{(x, y) \in \mathcal{R}} g(x, y) \rho(x, y, I_1, I_2, u_{\boldsymbol{\alpha}}, v_{\boldsymbol{\alpha}}), </math> where <math>{\boldsymbol{\alpha}}</math> is the set of parameters determining the motion in the region <math>\mathcal{R}</math>, <math>\rho()</math> is data cost term, <math>g()</math> is a weighting function that determines the influence of pixel <math>(x, y)</math> on the total cost, and <math>I_1</math> and <math>I_2</math> are frames 1 and 2 from a pair of consecutive frames.<ref name="Fortun_Survey_2015" /> The simplest parametric model is the [[Lucas-Kanade method]]. This uses rectangular regions and parameterises the motion as purely translational. The Lucas-Kanade method uses the original brightness constancy constrain as the data cost term and selects <math>g(x, y) = 1</math>. This yields the local loss function, :<math> \hat{\boldsymbol{\alpha}} = \arg \min_{\boldsymbol{\alpha}} \sum_{(x, y) \in \mathcal{R}} | I(x + u_{\boldsymbol{\alpha}}, y + v_{\boldsymbol{\alpha}}, t + 1) - I(x, y, t)| . </math> Other possible local loss functions include the negative normalized [[cross-correlation]] between the two frames.<ref>{{cite conference |last1=Lucas |first1=Bruce D. |last2=Kanade |first2=Takeo |date=1981-08-24 |title=An iterative image registration technique with an application to stereo vision |url=https://dl.acm.org/doi/10.5555/1623264.1623280 |journal=Proceedings of the 7th International Joint Conference on Artificial Intelligence - Volume 2 |series=IJCAI'81 |location=San Francisco, CA, USA |publisher=Morgan Kaufmann Publishers Inc. |pages=674β679}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)