Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Order of approximation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Second-order=== ''Second-order approximation'' is the term scientists use for a decent-quality answer. Few simplifying assumptions are made, and when a number is needed, an answer with two or more significant figures ("the town has {{val|3.9|e=3}}, or ''thirty-nine hundred'', residents") is generally given. As in the examples above, the term "2nd order" refers to the number of exact numerals given for the imprecise quantity. In this case, "3" and "9" are given as the two successive levels of precision, instead of simply the "4" from the first order, or "a few" from the zeroth order found in the examples above. A second-order approximation of a function (that is, mathematically determining a formula to fit multiple data points) will be a [[quadratic polynomial]], geometrically, a [[parabola]]: a polynomial of degree 2. For example: : <math>x = [0.00, 1.00, 2.00],</math> : <math>y = [3.00, 3.00, 5.00],</math> : <math>y \sim f(x) = x^2 - x + 3</math> is an approximate fit to the data. In this case, with only three data points, a parabola is an exact fit based on the data provided. However, the data points for most of the interval are not available, which advises caution (see "zeroth order").
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)