Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Orthogonal complement
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Inner product spaces == {{See also|Orthogonal projection}} This section considers orthogonal complements in an [[inner product space]] <math>H</math>.<ref>Adkins&Weintraub (1992) p.272</ref> Two vectors <math>\mathbf{x}</math> and <math>\mathbf{y}</math> are called {{em|[[Orthogonal vectors (inner product space)|orthogonal]]}} if <math>\langle \mathbf{x}, \mathbf{y} \rangle = 0</math>, which happens [[if and only if]] <math>\| \mathbf{x} \| \le \| \mathbf{x} + s\mathbf{y} \| \ \forall</math> scalars <math>s</math>.{{sfn|Rudin|1991|pp=306-312}} If <math>C</math> is any subset of an inner product space <math>H</math> then its {{em|{{visible anchor|orthogonal complement}} in <math>H</math>}} is the vector subspace <math display="block">\begin{align} C^\perp :&= \{\mathbf{x} \in H : \langle \mathbf{x}, \mathbf{c} \rangle = 0 \ \ \forall \ \mathbf{c} \in C\} \\ &= \{\mathbf{x} \in H : \langle \mathbf{c}, \mathbf{x} \rangle = 0 \ \ \forall \ \mathbf{c} \in C\} \end{align}</math> which is always a closed subset (hence, a closed vector subspace) of <math>H</math>{{sfn|Rudin|1991|pp=306-312}}<ref group="proof">If <math>C = \varnothing</math> then <math>C^{\bot} = H,</math> which is closed in <math>H</math> so assume <math>C \neq \varnothing.</math> Let <math display="inline">P := \prod_{c \in C} \mathbb{F}</math> where <math>\mathbb{F}</math> is the underlying scalar field of <math>H</math> and define <math>L : H \to P</math> by <math>L(h) := \left(\langle h, c \rangle\right)_{c \in C},</math> which is continuous because this is true of each of its coordinates <math>h \mapsto \langle h, c \rangle.</math> Then <math>C^{\bot} = L^{-1}(0) = L^{-1}\left(\{ 0 \}\right)</math> is closed in <math>H</math> because <math>\{ 0 \}</math> is closed in <math>P</math> and <math>L : H \to P</math> is continuous. If <math>\langle \,\cdot\,, \,\cdot\, \rangle</math> is linear in its first (respectively, its second) coordinate then <math>L : H \to P</math> is a [[linear map]] (resp. an [[antilinear map]]); either way, its kernel <math>\operatorname{ker} L = L^{-1}(0) = C^{\bot}</math> is a vector subspace of <math>H.</math> [[Q.E.D.]]</ref> that satisfies: * <math>C^{\bot} = \left(\operatorname{cl}_H \left(\operatorname{span} C\right)\right)^{\bot}</math>; * <math>C^{\bot} \cap \operatorname{cl}_H \left(\operatorname{span} C\right) = \{ 0 \}</math>; * <math>C^{\bot} \cap \left(\operatorname{span} C\right) = \{ 0 \}</math>; * <math>C \subseteq \left(C^{\bot}\right)^{\bot}</math>; * <math>\operatorname{cl}_H \left(\operatorname{span} C\right) \subseteq \left(C^{\bot}\right)^{\bot}</math>. If <math>C</math> is a vector subspace of an inner product space <math>H</math> then <math display="block">C^{\bot} = \left\{\mathbf{x} \in H : \|\mathbf{x}\| \leq \|\mathbf{x} + \mathbf{c}\| \ \ \forall \ \mathbf{c} \in C \right\}.</math> If <math>C</math> is a closed vector subspace of a Hilbert space <math>H</math> then{{sfn|Rudin|1991|pp=306-312}} <math display="block">H = C \oplus C^{\bot} \qquad \text{ and } \qquad \left(C^{\bot}\right)^{\bot} = C</math> where <math>H = C \oplus C^{\bot}</math> is called the {{em|{{visible anchor|orthogonal decomposition}}}} of <math>H</math> into <math>C</math> and <math>C^{\bot}</math> and it indicates that <math>C</math> is a [[complemented subspace]] of <math>H</math> with complement <math>C^{\bot}.</math> === Properties === The orthogonal complement is always closed in the metric topology. In finite-dimensional spaces, that is merely an instance of the fact that all subspaces of a vector space are closed. In infinite-dimensional [[Hilbert space]]s, some subspaces are not closed, but all orthogonal complements are closed. If <math>W</math> is a vector subspace of a [[Hilbert space]] the orthogonal complement of the orthogonal complement of <math>W</math> is the [[Closure (topology)|closure]] of <math>W,</math> that is, <math display="block">\left(W^\bot\right)^\bot = \overline W.</math> Some other useful properties that always hold are the following. Let <math>H</math> be a Hilbert space and let <math>X</math> and <math>Y</math> be linear subspaces. Then: * <math>X^\bot = \overline{X}^{\bot}</math>; * if <math>Y \subseteq X</math> then <math>X^\bot \subseteq Y^\bot</math>; * <math>X \cap X^\bot = \{ 0 \}</math>; * <math>X \subseteq (X^\bot)^\bot</math>; * if <math>X</math> is a closed linear subspace of <math>H</math> then <math>(X^\bot)^\bot = X</math>; * if <math>X</math> is a closed linear subspace of <math>H</math> then <math>H = X \oplus X^\bot,</math> the (inner) [[direct sum]]. The orthogonal complement generalizes to the [[Annihilator (ring theory)|annihilator]], and gives a [[Galois connection]] on subsets of the inner product space, with associated [[closure operator]] the topological closure of the span. === Finite dimensions === For a finite-dimensional inner product space of dimension <math>n</math>, the orthogonal complement of a <math>k</math>-dimensional subspace is an <math>(n-k)</math>-dimensional subspace, and the double orthogonal complement is the original subspace: <math display="block">\left(W^{\bot}\right)^{\bot} = W.</math> If <math>\mathbf{A} \in \mathbb{M}_{mn}</math>, where <math>\mathcal{R}(\mathbf{A})</math>, <math>\mathcal{C} (\mathbf{A})</math>, and <math>\mathcal{N} (\mathbf{A})</math> refer to the [[row space]], [[column space]], and [[null space]] of <math>\mathbf{A}</math> (respectively), then<ref>[https://www.mathwizurd.com/linalg/2018/12/10/orthogonal-complement "Orthogonal Complement"]</ref> <math display="block">\left(\mathcal{R} (\mathbf{A}) \right)^{\bot} = \mathcal{N} (\mathbf{A}) \qquad \text{ and } \qquad \left(\mathcal{C} (\mathbf{A}) \right)^{\bot} = \mathcal{N} (\mathbf{A}^{\operatorname{T}}).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)