Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Parabolic coordinates
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Three-dimensional scale factors== The three dimensional scale factors are: :<math>h_{\sigma} = \sqrt{\sigma^2+\tau^2}</math> :<math>h_{\tau} = \sqrt{\sigma^2+\tau^2}</math> :<math>h_{\varphi} = \sigma\tau</math> It is seen that the scale factors <math>h_{\sigma}</math> and <math>h_{\tau}</math> are the same as in the two-dimensional case. The infinitesimal volume element is then :<math> dV = h_\sigma h_\tau h_\varphi\, d\sigma\,d\tau\,d\varphi = \sigma\tau \left( \sigma^{2} + \tau^{2} \right)\,d\sigma\,d\tau\,d\varphi </math> and the Laplacian is given by :<math> \nabla^2 \Phi = \frac{1}{\sigma^{2} + \tau^{2}} \left[ \frac{1}{\sigma} \frac{\partial}{\partial \sigma} \left( \sigma \frac{\partial \Phi}{\partial \sigma} \right) + \frac{1}{\tau} \frac{\partial}{\partial \tau} \left( \tau \frac{\partial \Phi}{\partial \tau} \right)\right] + \frac{1}{\sigma^2\tau^2}\frac{\partial^2 \Phi}{\partial \varphi^2} </math> Other differential operators such as <math>\nabla \cdot \mathbf{F}</math> and <math>\nabla \times \mathbf{F}</math> can be expressed in the coordinates <math>(\sigma, \tau, \phi)</math> by substituting the scale factors into the general formulae found in [[orthogonal coordinates]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)