Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Partially ordered set
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Correspondence of strict and non-strict partial order relations === [[File:PartialOrders redundencies svg.svg|thumb|upright=1.25|'''Fig. 2''' [[Commutative diagram]] about the connections between strict/non-strict relations and their duals, via the operations of reflexive closure (''cls''), irreflexive kernel (''ker''), and converse relation (''cnv''). Each relation is depicted by its [[logical matrix]] for the poset whose [[Hasse diagram]] is depicted in the center. For example <math>3 \not\leq 4</math> so row 3, column 4 of the bottom left matrix is empty.]] Strict and non-strict partial orders on a set <math>P</math> are closely related. A non-strict partial order <math>\leq</math> may be converted to a strict partial order by removing all relationships of the form <math>a \leq a;</math> that is, the strict partial order is the set <math>< \; := \ \leq\ \setminus \ \Delta_P</math> where <math>\Delta_P := \{ (p, p) : p \in P \}</math> is the [[identity relation]] on <math>P \times P</math> and <math>\;\setminus\;</math> denotes [[set subtraction]]. Conversely, a strict partial order < on <math>P</math> may be converted to a non-strict partial order by adjoining all relationships of that form; that is, <math>\leq\; := \;\Delta_P\; \cup \;<\;</math> is a non-strict partial order. Thus, if <math>\leq</math> is a non-strict partial order, then the corresponding strict partial order < is the [[irreflexive kernel]] given by <math display=block>a < b \text{ if } a \leq b \text{ and } a \neq b.</math> Conversely, if < is a strict partial order, then the corresponding non-strict partial order <math>\leq</math> is the [[reflexive closure]] given by: <math display=block>a \leq b \text{ if } a < b \text{ or } a = b.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)