Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Particle physics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Quarks and leptons === {{Main|Quark|Lepton}} [[File:Beta_Negative_Decay.svg|thumb|A [[Feynman diagram]] of the [[Beta decay|{{SubatomicParticle|Beta-}} decay]], showing a neutron (n, udd) converted into a proton (p, udu). "u" and "d" are the [[Up quark|up]] and [[down quark]]s, "{{Subatomic particle|electron}}" is the [[electron]], and "{{Subatomic particle|Electron antineutrino}}" is the [[Electron Antineutrino|electron antineutrino]].]] Ordinary [[matter]] is made from first-[[Generation (particle physics)|generation]] quarks ([[Up quark|up]], [[Down quark|down]]) and leptons ([[electron]], [[electron neutrino]]).<ref name="Povh02">{{cite book |author=Povh |first1=B. |title=Particles and Nuclei: An Introduction to the Physical Concepts |last2=Rith |first2=K. |last3=Scholz |first3=C. |last4=Zetsche |first4=F. |last5=Lavelle |first5=M. |date=2004 |publisher=Springer |isbn=978-3-540-20168-7 |edition=4th |chapter=Part I: Analysis: The building blocks of matter |quote=Ordinary matter is composed entirely of first-generation particles, namely the u and d quarks, plus the electron and its neutrino. |access-date=28 July 2022 |chapter-url=https://books.google.com/books?id=rJe4k8tkq7sC&q=povh+%22building+blocks+of+matter%22&pg=PA9 |archive-url=https://web.archive.org/web/20220422024501/https://books.google.com/books?id=rJe4k8tkq7sC&q=povh+%22building+blocks+of+matter%22&pg=PA9 |archive-date=22 April 2022 |url-status=live}}</ref> Collectively, quarks and leptons are called [[fermion]]s, because they have a [[quantum spin]] of [[half-integer]]s (β1/2, 1/2, 3/2, etc.). This causes the fermions to obey the [[Pauli exclusion principle]], where no two particles may occupy the same [[quantum state]].<ref>{{cite book |author=Peacock |first=K. A. |url=https://archive.org/details/quantumrevolutio00peac |title=The Quantum Revolution |publisher=[[Greenwood Publishing Group]] |year=2008 |isbn=978-0-313-33448-1 |page=[https://archive.org/details/quantumrevolutio00peac/page/n143 125] |url-access=limited}}</ref> Quarks have fractional [[Elementary charge|elementary electric charge]] (β1/3 or 2/3)<ref>{{cite book |author=Quigg |first=C. |title=The New Physics for the Twenty-First Century |publisher=[[Cambridge University Press]] |year=2006 |isbn=978-0-521-81600-7 |editor=G. Fraser |page=91 |chapter=Particles and the Standard Model}}</ref> and leptons have whole-numbered electric charge (0 or -1).<ref>{{Cite book |last1=Serway |first1=Raymond A. |url=https://books.google.com/books?id=ecYWAAAAQBAJ |title=Physics for Scientists and Engineers, Volume 2 |last2=Jewett |first2=John W. |date=2013-01-01 |publisher=Cengage Learning |isbn=978-1-285-62958-2 |language=en}}</ref> Quarks also have [[color charge]], which is labeled arbitrarily with no correlation to actual light [[color]] as red, green and blue.<ref name="R. Nave">{{cite web |author=Nave |first=R. |title=The Color Force |url=http://hyperphysics.phy-astr.gsu.edu/hbase/forces/color.html#c2 |url-status=live |archive-url=https://web.archive.org/web/20181007142048/http://hyperphysics.phy-astr.gsu.edu/hbase/Forces/color.html#c2 |archive-date=7 October 2018 |access-date=2009-04-26 |work=[[HyperPhysics]] |publisher=[[Georgia State University]], Department of Physics and Astronomy}}</ref> Because the interactions between the quarks store energy which can convert to other particles when the quarks are far apart enough, quarks cannot be observed independently. This is called [[color confinement]].<ref name="R. Nave"/> There are three known generations of quarks (up and down, [[Strange quark|strange]] and [[Charm quark|charm]], [[Top quark|top]] and [[Bottom quark|bottom]]) and leptons (electron and its neutrino, [[muon]] and [[Muon neutrino|its neutrino]], [[Tau (particle)|tau]] and [[Tau neutrino|its neutrino]]), with strong indirect evidence that a fourth generation of fermions does not exist.<ref>{{cite journal |author=Decamp |first=D. |year=1989 |title=Determination of the number of light neutrino species |url=https://cds.cern.ch/record/201511 |journal=[[Physics Letters B]] |volume=231 |issue=4 |pages=519β529 |bibcode=1989PhLB..231..519D |doi=10.1016/0370-2693(89)90704-1 |hdl-access=free |hdl=11384/1735}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)