Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pascal's triangle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Combinations == A second useful application of Pascal's triangle is in the calculation of [[combination]]s. The number of combinations of <math>n</math> items taken <math>k</math> at a time, i.e. the number of subsets of <math>k</math> elements from among <math>n</math> elements, can be found by the equation :<math> \mathbf{C}(n, k) = \mathbf{C}_{k}^{n}= {{}_{n}C_{k}} = {n \choose k} = \frac{n!}{k!(n-k)!}</math>. This is equal to entry <math>k</math> in row <math>n</math> of Pascal's triangle. Rather than performing the multiplicative calculation, one can simply look up the appropriate entry in the triangle (constructed by additions). For example, suppose 3 workers need to be hired from among 7 candidates; then the number of possible hiring choices is 7 choose 3, the entry 3 in row 7 of the above table (taking into consideration the first row is the 0th row), which is <math> \tbinom{7}{3}=35 </math>.<ref>{{Cite web |url=http://5010.mathed.usu.edu/Fall2018/HWheeler/probability.html |access-date=2023-06-01 |website=5010.mathed.usu.edu|title=Pascal's Triangle in Probability}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)