Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pearson correlation coefficient
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===For a population=== Pearson's correlation coefficient, when applied to a [[statistical population|population]], is commonly represented by the Greek letter ''Ο'' (rho) and may be referred to as the ''population correlation coefficient'' or the ''population Pearson correlation coefficient''. Given a pair of random variables <math>(X,Y)</math> (for example, Height and Weight), the formula for ''Ο''<ref name="RealCorBasic">Real Statistics Using Excel, "[http://www.real-statistics.com/correlation/basic-concepts-correlation/ Basic Concepts of Correlation]", retrieved 22 February 2015.</ref> is<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Statistical Correlation|url=https://mathworld.wolfram.com/StatisticalCorrelation.html|access-date=2020-08-22|website=Wolfram MathWorld|language=en}}</ref> <math display=block> \rho_{X,Y}= \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}</math> where *<math> \operatorname{cov} </math> is the [[covariance]] *<math> \sigma_X </math> is the [[standard deviation]] of <math> X </math> *<math> \sigma_Y </math> is the standard deviation of <math> Y </math>. The formula for <math>\operatorname{cov}(X,Y)</math> can be expressed in terms of [[mean]] and [[Expected Value|expectation]]. Since<ref name="RealCorBasic"/> :<math>\operatorname{cov}(X,Y) = \operatorname\mathbb{E}[(X-\mu_X)(Y-\mu_Y)],</math> the formula for <math>\rho</math> can also be written as <math display=block> \rho_{X,Y} = \frac{\operatorname\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X\sigma_Y}</math> where *<math> \sigma_Y </math> and <math> \sigma_X </math> are defined as above *<math> \mu_X </math> is the mean of <math> X </math> *<math> \mu_Y </math> is the mean of <math> Y </math> *<math> \operatorname\mathbb{E} </math> is the expectation. The formula for <math>\rho</math> can be expressed in terms of uncentered moments. Since :<math>\begin{align} \mu_X ={} &\operatorname\mathbb{E}[X] \\ \mu_Y ={} &\operatorname\mathbb{E}[Y] \\ \sigma_X^2 ={} &\operatorname\mathbb{E}\left[\left(X - \operatorname\mathbb{E}[X]\right)^2\right] = \operatorname\mathbb{E}\left[X^2\right] - \left(\operatorname\mathbb{E}[X]\right)^2 \\ \sigma_Y^2 ={} &\operatorname\mathbb{E}\left[\left(Y - \operatorname\mathbb{E}[Y]\right)^2\right] = \operatorname\mathbb{E}\left[Y^2\right] - \left(\operatorname\mathbb{E}[Y]\right)^2 \\ \operatorname{cov}(X,Y) ={} &\operatorname\mathbb{E}[\left(X - \mu_X\right)\left(Y - \mu_Y\right)] = \operatorname\mathbb{E}[\left(X - \operatorname\mathbb{E}[X]\right)\left(Y - \operatorname\mathbb{E}[Y]\right)] = \operatorname\mathbb{E}[XY] - \operatorname\mathbb{E}[X]\operatorname\mathbb{E}[Y] , \end{align}</math> the formula for <math>\rho</math> can also be written as <math display="block">\rho_{X,Y} = \frac{\operatorname\mathbb{E}[XY] - \operatorname\mathbb{E}[X]\operatorname\mathbb{E}[Y]}{\sqrt{\operatorname\mathbb{E}\left[X^2\right] - \left(\operatorname\mathbb{E}[X] \right)^2} ~ \sqrt{\operatorname\mathbb{E}\left[Y^2\right] - \left(\operatorname\mathbb{E}[Y] \right)^2}}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)