Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Permutation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Two-line notation=== [[Augustin-Louis Cauchy|Cauchy]]'s ''two-line notation''<ref>{{cite journal |last1=Cauchy |first1=A. L. |title=Mémoire Sur le Nombre des Valeurs qu'une Fonction peut acquérir, lorsqu'on y permute de toutes les manières possibles les quantités qu'elle renferme |journal=Journal de l'École polytechnique |date=January 1815 |volume=10 |pages=1–28 |url=https://babel.hathitrust.org/cgi/pt?id=mdp.39015074785612&seq=9 |trans-title=Memoir on the number of values which a function can acquire when one permutes within it, in all possible ways, the variables which it contains |language=French}} See p. 4. * [https://nonagon.org/ExLibris/cauchys-memoire-sur-le-nombre-des-valeurs English translation]</ref><ref>{{citation|title=The Genesis of the Abstract Group Concept: A Contribution to the History of the Origin of Abstract Group Theory|first=Hans|last=Wussing|publisher=Courier Dover Publications|year=2007|isbn=9780486458687|page=94|url=https://books.google.com/books?id=Xp3JymnfAq4C&pg=PA94|quote=Cauchy used his permutation notation—in which the arrangements are written one below the other and both are enclosed in parentheses—for the first time in 1815.}}</ref> lists the elements of ''S'' in the first row, and the image of each element below it in the second row. For example, the permutation of ''S'' = {1, 2, 3, 4, 5, 6} given by the function<blockquote><math>\sigma(1) = 2, \ \ \sigma(2) = 6, \ \ \sigma(3) = 5, \ \ \sigma(4) = 4, \ \ \sigma(5) = 3, \ \ \sigma(6) = 1 </math></blockquote>can be written as : <math>\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 5 & 4 & 3 & 1 \end{pmatrix}.</math> The elements of ''S'' may appear in any order in the first row, so this permutation could also be written: : <math>\sigma = \begin{pmatrix} 2 & 3 & 4 & 5 & 6 & 1 \\ 6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 5 & 4 & 3 & 2 & 1 \\ 1 & 3 & 4 & 5 & 6 & 2 \end{pmatrix}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)