Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Phasor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Multiplication by a constant (scalar)=== Multiplication of the phasor <math>A e^{i\theta} e^{i\omega t}</math> by a complex constant, <math>B e^{i\phi}</math>, produces another phasor. That means its only effect is to change the amplitude and phase of the underlying sinusoid: <math display="block">\begin{align} &\operatorname{Re}\left( \left(A e^{i\theta} \cdot B e^{i\phi}\right) \cdot e^{i\omega t} \right) \\ ={} &\operatorname{Re}\left( \left(AB e^{i(\theta + \phi)}\right) \cdot e^{i\omega t} \right) \\ ={} &AB \cos(\omega t + (\theta + \phi)). \end{align}</math> In electronics, <math>B e^{i\phi}</math> would represent an [[electrical impedance|impedance]], which is independent of time. In particular it is ''not'' the shorthand notation for another phasor. Multiplying a phasor current by an impedance produces a phasor voltage. But the product of two phasors (or squaring a phasor) would represent the product of two sinusoids, which is a non-linear operation that produces new frequency components. Phasor notation can only represent systems with one frequency, such as a linear system stimulated by a sinusoid.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)