Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Photon
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Antiparticle annihilation === {{Main | Annihilation | Electron–positron annihilation}} The collision of a particle with its antiparticle can create photons. In free space at least ''two'' photons must be created since, in the [[center of momentum frame]], the colliding antiparticles have no net momentum, whereas a single photon always has momentum (determined by the photon's frequency or wavelength, which cannot be zero). Hence, [[momentum|conservation of momentum]] (or equivalently, [[translational invariance]]) requires that at least two photons are created, with zero net momentum.<ref name=Griffiths2008>{{cite book |last=Griffiths |first=David J. |year=2008 |title=Introduction to Elementary Particles |edition=2nd revised |publisher=WILEY-VCH |isbn=978-3-527-40601-2}}</ref>{{rp|64–65}} The energy of the two photons, or, equivalently, their frequency, may be determined from [[Conservation law (physics)|conservation of four-momentum]]. {{anchor |antiphoton}}Seen another way, the photon can be considered as its own antiparticle (thus an "antiphoton" is simply a normal photon with opposite momentum, equal polarization, and 180° out of phase). The reverse process, [[pair production]], is the dominant mechanism by which high-energy photons such as [[gamma ray]]s lose energy while passing through matter.<ref>{{harvnb|Alonso|Finn|1968|loc=Section 9.3}}.</ref> That process is the reverse of "annihilation to one photon" allowed in the electric field of an atomic nucleus. The classical formulae for the energy and momentum of [[electromagnetic radiation]] can be re-expressed in terms of photon events. For example, the [[radiation pressure|pressure of electromagnetic radiation]] on an object derives from the transfer of photon momentum per unit time and unit area to that object, since pressure is force per unit area and force is the change in [[momentum]] per unit time.<ref>{{cite book |last1=Born |first1=Max |url={{google books |plainurl=y |id=NmM-KujxMtoC}} |title=Atomic Physics |last2=Blin-Stoyle |first2=Roger John |last3=Radcliffe |first3=J. M. |date=1989 |publisher=Courier Corporation |isbn=978-0-486-65984-8 |language=en |section=Appendix XXXII}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)