Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Plasma oscillation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Plasma oscillations and the effect of the negative mass === [[File:A mechanical model giving rise to the negative effective mass effect..jpg|alt=A mechanical model giving rise to the negative effective mass effect|thumb|'''Figure 1.''' Core with mass <math>m_2</math> is connected internally through the spring with <math>k_2</math> to a shell with mass <math>m_1</math>. The system is subjected to the sinusoidal force <math>F(t) = \widehat{F}\sin\omega t</math>.]] Plasma oscillations may give rise to the effect of the “[[negative mass]]”. The mechanical model giving rise to the negative effective mass effect is depicted in '''Figure 1'''. A core with mass <math>m_2</math> is connected internally through the spring with constant <math>k_2</math> to a shell with mass <math>m_1</math>. The system is subjected to the external sinusoidal force <math>F(t)=\widehat{F}\sin\omega t</math>. If we solve the equations of motion for the masses <math>m_1</math> and <math>m_2</math> and replace the entire system with a single effective mass <math>m_{\rm eff}</math> we obtain:<ref name=":0">{{Cite journal|last1=Milton|first1=Graeme W| last2=Willis|first2=John R| date=2007-03-08|title=On modifications of Newton's second law and linear continuum elastodynamics | url=https://royalsocietypublishing.org/doi/10.1098/rspa.2006.1795|journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences|volume=463|issue=2079|pages=855–880| doi=10.1098/rspa.2006.1795|bibcode=2007RSPSA.463..855M|s2cid=122990527|url-access=subscription}}</ref><ref name=":1">{{Cite journal| last1=Chan|first1=C. T.|last2=Li|first2=Jensen|last3=Fung|first3=K. H.|date=2006-01-01|title=On extending the concept of double negativity to acoustic waves|url=https://doi.org/10.1631/jzus.2006.A0024|journal= Journal of Zhejiang University Science A|language=en|volume=7|issue=1|pages=24–28| doi=10.1631/jzus.2006.A0024|bibcode=2006JZUSA...7...24C | s2cid=120899746| issn=1862-1775|url-access=subscription}}</ref><ref name=":2">{{Cite journal|last1=Huang|first1=H. H.|last2=Sun|first2=C. T.| last3=Huang|first3=G. L.|date=2009-04-01|title=On the negative effective mass density in acoustic metamaterials |url=http://www.sciencedirect.com/science/article/pii/S0020722508002279|journal=International Journal of Engineering Science|language=en|volume=47|issue=4|pages=610–617 | doi=10.1016/j.ijengsci.2008.12.007 |issn=0020-7225|url-access=subscription}}</ref><ref name=":3">{{Cite journal| last1=Yao|first1=Shanshan |last2=Zhou|first2=Xiaoming |last3=Hu|first3=Gengkai |date=2008-04-14|title=Experimental study on negative effective mass in a 1D mass–spring system |journal=New Journal of Physics |volume=10|issue=4|pages=043020|doi=10.1088/1367-2630/10/4/043020 |bibcode=2008NJPh...10d3020Y|issn=1367-2630|doi-access=free}}</ref><ref name=":4"/> <math display="block">m_{\rm eff}=m_1+{m_2\omega_0^2\over \omega_0^2-\omega^2},</math> where <math display="inline">\omega_0=\sqrt{k_2 / m_2}</math>. When the frequency <math>\omega</math> approaches <math>\omega_0</math> from above the effective mass <math>m_{\rm eff}</math> will be negative.<ref name=":0" /><ref name=":1" /><ref name=":2" /><ref name=":3" /> [[File:Equivalent mechanical scheme of electron gas in ionic lattice..jpg|thumb|'''Figure 2.''' Free electrons gas <math>m_2</math> is embedded into the ionic lattice <math>m_1</math>; <math>\omega_{\rm p}</math> is the plasma frequency (the left sketch). The equivalent mechanical scheme of the system (right sketch).]] The negative effective mass (density) becomes also possible based on the electro-mechanical coupling exploiting plasma oscillations of a free electron gas (see '''Figure 2''').<ref name=":4">{{Cite journal| last1=Bormashenko|first1=Edward |last2=Legchenkova|first2=Irina |date=April 2020|title=Negative Effective Mass in Plasmonic Systems |journal=Materials |language=en |volume=13 |issue=8 |pages=1890 |doi=10.3390/ma13081890 |pmc=7215794 |pmid=32316640 |bibcode=2020Mate...13.1890B |doi-access=free}} [[File:CC-BY icon.svg|50px]] Text was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref><ref name=":5">{{Cite journal |last1=Bormashenko|first1=Edward |last2=Legchenkova|first2=Irina |last3=Frenkel|first3=Mark |date=August 2020 | title=Negative Effective Mass in Plasmonic Systems II: Elucidating the Optical and Acoustical Branches of Vibrations and the Possibility of Anti-Resonance Propagation |journal=Materials |language=en |volume=13 |issue=16 |pages=3512 |doi=10.3390/ma13163512|pmc=7476018|pmid=32784869|bibcode=2020Mate...13.3512B|doi-access=free}}</ref> The negative mass appears as a result of vibration of a metallic particle with a frequency of <math>\omega</math> which is close the frequency of the plasma oscillations of the electron gas <math>m_2</math> relatively to the ionic lattice <math>m_1</math>. The plasma oscillations are represented with the elastic spring <math>k_2 = \omega_{\rm p}^2m_2</math>, where <math>\omega_{\rm p}</math> is the plasma frequency. Thus, the metallic particle vibrated with the external frequency ''ω'' is described by the effective mass <math display="block">m_{\rm eff}=m_1+{m_2\omega_{\rm p}^2\over \omega_{\rm p}^2-\omega^2},</math> which is negative when the frequency <math>\omega</math> approaches <math>\omega_{\rm p}</math> from above. Metamaterials exploiting the effect of the negative mass in the vicinity of the plasma frequency were reported.<ref name=":4" /><ref name=":5" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)