Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Poisson bracket
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Poisson matrix in canonical transformations == {{Main|Canonical transformation}} The concept of Poisson brackets can be expanded to that of matrices by defining the Poisson matrix. Consider the following canonical transformation:<math display="block">\eta = \begin{bmatrix} q_1\\ \vdots \\ q_N\\ p_1\\ \vdots\\ p_N\\ \end{bmatrix} \quad \rightarrow \quad \varepsilon = \begin{bmatrix} Q_1\\ \vdots \\ Q_N\\ P_1\\ \vdots\\ P_N\\ \end{bmatrix} </math>Defining <math display="inline">M := \frac{\partial (\mathbf{Q}, \mathbf{P})}{\partial (\mathbf{q}, \mathbf{p})}</math>, the Poisson matrix is defined as <math display="inline">\mathcal P(\varepsilon) = MJM^T </math>, where <math>J</math> is the symplectic matrix under the same conventions used to order the set of coordinates. It follows from the definition that:<math display="block">\mathcal P_{ij}(\varepsilon) = [MJM^T]_{ij}=\sum_{k=1}^{N} \left( \frac{\partial \varepsilon_i}{\partial \eta_{k}} \frac{\partial \varepsilon_j}{\partial \eta_{N+k}} - \frac{\partial \varepsilon_i}{\partial \eta_{N+k}} \frac{\partial \varepsilon_j}{\partial \eta_k}\right)=\sum_{k=1}^{N} \left( \frac{\partial \varepsilon_i}{\partial q_{k}} \frac{\partial \varepsilon_j}{\partial p_k} - \frac{\partial \varepsilon_i}{\partial p_k} \frac{\partial \varepsilon_j}{\partial q_k}\right)=\{ \varepsilon_i,\varepsilon_j\}_\eta. </math> The Poisson matrix satisfies the following known properties:<math display="block">\begin{align} \mathcal P^T &= - \mathcal P \\ |\mathcal P| &= \frac{1}{|M|^2}\\ \mathcal P^{-1}(\varepsilon)&= -(M^{-1})^T J M^{-1} = - \mathcal L (\varepsilon)\\ \end{align} </math> where the <math display="inline">\mathcal L(\varepsilon) </math> is known as a Lagrange matrix and whose elements correspond to [[Lagrange bracket]]s. The last identity can also be stated as the following:<math display="block">\sum_{k=1}^{2N} \{\eta_i,\eta_k\}[\eta_k,\eta_j] = -\delta_{ij} </math>Note that the summation here involves generalized coordinates as well as generalized momentum. The invariance of Poisson bracket can be expressed as: <math display="inline">\{ \varepsilon_i,\varepsilon_j\}_\eta=\{ \varepsilon_i,\varepsilon_j\}_\varepsilon = J_{ij} </math>, which directly leads to the symplectic condition: <math display="inline">MJM^T = J </math>.<ref>{{Cite book |last=Giacaglia |first=Giorgio E. O. |title=Perturbation methods in non-linear systems |date=1972 |publisher=Springer |isbn=978-3-540-90054-2 |series=Applied mathematical sciences |location=New York Heidelberg |pages=8β9}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)