Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polish notation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Polish notation for logic== The table below shows the core of [[Jan Łukasiewicz]]'s notation in modern logic. Some letters in the Polish notation table stand for particular words in [[Polish language|Polish]], as shown: {| class=wikitable |- !Concept!!Conventional<br/> notation!!Polish<br/> notation!!Polish<br/>term |- |- style="border-top:3px solid #999;" |- |[[Negation]]||<math>\neg\phi</math>||<math> N\phi</math><ref name="Łukasiewicz_1929"/>{{rp|pages=27–28}}||{{lang|pl|negacja}} |- |[[Material conditional]]||<math>\phi\to\psi</math>||<math>C\phi\psi</math><ref name="Łukasiewicz_1929"/>{{rp|pages=28–31}}||{{lang|pl|implikacja}} |- |[[Disjunction]]||<math>\phi\lor\psi</math>||<math>A\phi\psi</math><ref name="Łukasiewicz_1929"/>{{rp|pages=34–35}}||{{lang|pl|alternatywa}} |- |[[Logical conjunction|Conjunction]]||<math>\phi\land\psi</math>||<math>K\phi\psi</math><ref name="Łukasiewicz_1929"/>{{rp|pages=35–36}}||{{lang|pl|koniunkcja}} |- |[[Sheffer stroke|Non-conjunction]]||<math>\phi\mid\psi </math>||<math>D\phi\psi</math><ref name="Łukasiewicz_1929"/>{{rp|page=36}}||{{lang|pl|dysjunkcja}} |- |[[Biconditional]]||<math>\phi\leftrightarrow\psi</math>||<math>E\phi\psi</math><ref name="Łukasiewicz_1929"/>{{rp|page=37}} or <math>Q\phi\psi</math><ref name="Łukasiewicz_1957"/>{{rp|page=108}}||{{lang|pl|ekwiwalencja}} |- |[[Universal quantification|Universal quantifier]]||<math>\forall p\,\phi</math>||<math>\varPi p\,\phi</math><ref name="Łukasiewicz_1929"/>{{rp|pages=154–156}}||{{lang|pl|kwantyfikator ogólny}} |- |[[Existential quantification|Existential quantifier]]||<math>\exists p\,\phi</math>||<math>\varSigma p\,\phi</math><ref name="Łukasiewicz_1929"/>{{rp|page=157}}||{{lang|pl|kwantyfikator szczegółowy}} |- |[[Verum]]||<math>\top</math>||<math>V</math><ref name="Łukasiewicz_1939"/>{{rp|page=275}}||{{lang|pl|prawda, prawdziwy}} |- |[[Falsum]]||<math>\bot</math>||<math>O</math><ref name="Łukasiewicz_1939"/>{{rp|page=275}}||{{lang|pl|fałsz, fałszywy}} |- |[[Modal logic|Possibility]]||<math>\Diamond\phi</math>||<math>M\phi</math><ref name="Łukasiewicz_1930x"/>{{rp|page=52}}<ref name="Łukasiewicz_1957"/>{{rp|page=134}} or <math>\varDelta\phi</math><ref name="Łukasiewicz_1953"/>{{rp|page=111}}||{{lang|pl|możliwość}} |- |[[Modal logic|Necessity]]||<math>\Box\phi</math>||<math>L\phi</math><ref name="Łukasiewicz_1957"/>{{rp|page=134}} or <math>\varGamma\phi</math><ref name="Łukasiewicz_1953"/>{{rp|page=111}}||{{lang|pl|konieczność}} |} The [[quantifier (logic)|quantifiers]] ranged over propositional values in Łukasiewicz's work on many-valued logics. [[Józef Maria Bocheński|Bocheński]] introduced a system of Polish notation that names all 16 binary [[logical connective|connectives]] of classical [[propositional logic]].<ref name="Bochenski_1949"/>{{rp|page=16}} For classical propositional logic, it is a compatible extension of the notation of Łukasiewicz. But the notations are incompatible in the sense that Bocheński uses <math>L</math> and <math>M</math> (for nonimplication and converse nonimplication) in propositional logic and Łukasiewicz uses <math>L</math> and <math>M</math> in modal logic.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)