Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polyploidy
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Autopolyploidy ==== '''Autopolyploids''' are polyploids with multiple chromosome sets derived from a single [[taxon]]. Two examples of natural autopolyploids are the piggyback plant, ''[[Tolmiea menziesii|Tolmiea menzisii]]''<ref>{{Cite journal| vauthors = Soltis DE |date=October 1984 |title=Autopolyploidy in ''Tolmiea menziesii'' (Saxifragaceae)|journal=American Journal of Botany|volume=71|issue=9|pages=1171–1174|doi=10.2307/2443640|jstor=2443640}}</ref> and the white sturgeon, ''[[White sturgeon|Acipenser transmontanum]]''.<ref>{{Cite journal| vauthors = Drauch Schreier A, Gille D, Mahardja B, May B |date= November 2011|title=Neutral markers confirm the octoploid origin and reveal spontaneous autopolyploidy in white sturgeon, ''Acipenser transmontanus''|journal=Journal of Applied Ichthyology|language=en|volume=27|pages=24–33|doi=10.1111/j.1439-0426.2011.01873.x|issn=1439-0426|doi-access=free|bibcode= 2011JApIc..27...24D}}</ref> Most instances of autopolyploidy result from the fusion of unreduced (2''n'') gametes, which results in either triploid (''n'' + 2''n'' = 3''n'') or tetraploid (2''n'' + 2''n'' = 4''n'') offspring.<ref name="Bretagnolle_1995">{{cite journal | vauthors = Bretagnolle F, Thompson JD | title = Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants | journal = The New Phytologist | volume = 129 | issue = 1 | pages = 1–22 | date = January 1995 | pmid = 33874422 | doi = 10.1111/j.1469-8137.1995.tb03005.x | doi-access = free }}</ref> Triploid offspring are typically sterile (as in the phenomenon of [[triploid block]]), but in some cases they may produce high proportions of unreduced gametes and thus aid the formation of tetraploids. This pathway to tetraploidy is referred to as the ''triploid bridge''.<ref name="Bretagnolle_1995" /> Triploids may also persist through [[asexual reproduction]]. In fact, stable autotriploidy in plants is often associated with [[Apomixis|apomictic]] mating systems.<ref>{{Cite journal| vauthors = Müntzing A |date=March 1936|title=The Evolutionary Significance of Autopolyploidy|journal=Hereditas|language=en|volume=21|issue=2–3|pages=363–378|doi=10.1111/j.1601-5223.1936.tb03204.x|issn=1601-5223|doi-access=}}</ref> In agricultural systems, autotriploidy can result in seedlessness, as in [[watermelon]]s and [[banana]]s.<ref>{{cite journal | vauthors = Varoquaux F, Blanvillain R, Delseny M, Gallois P | title = Less is better: new approaches for seedless fruit production | journal = Trends in Biotechnology | volume = 18 | issue = 6 | pages = 233–242 | date = June 2000 | pmid = 10802558 | doi = 10.1016/s0167-7799(00)01448-7 }}</ref> Triploidy is also utilized in salmon and trout farming to induce sterility.<ref>{{Cite journal| vauthors = Cotter D, O'Donovan V, O'Maoiléidigh N, Rogan G, Roche N, Wilkins NP |date=June 2000|title=An evaluation of the use of triploid Atlantic salmon (''Salmo salar'' L.) in minimising the impact of escaped farmed salmon on wild populations|journal=Aquaculture|volume=186|issue=1–2|pages=61–75|doi=10.1016/S0044-8486(99)00367-1|bibcode=2000Aquac.186...61C }}</ref><ref>{{Cite journal| vauthors = Lincoln RF, Scott AP |year=1983|title=Production of all-female triploid rainbow trout|journal=Aquaculture|language=en|volume=30|issue=1–4|pages=375–380|doi=10.1016/0044-8486(83)90179-5|bibcode=1983Aquac..30..375L }}</ref> Rarely, autopolyploids arise from spontaneous, somatic genome doubling, which has been observed in apple (''Malus domesticus'') [[Sport (botany)|bud sports]].<ref>{{Cite journal| vauthors = Dermen H |date=May 1951|title=Tetraploid and Diploid Adventitious Shoots: From a Giant Sport of McIntosh Apple|journal=Journal of Heredity|volume=42|issue=3|pages=145–149|doi=10.1093/oxfordjournals.jhered.a106189 }}</ref> This is also the most common pathway of artificially induced polyploidy, where methods such as [[Somatic fusion|protoplast fusion]] or treatment with [[colchicine]], [[oryzalin]] or [[mitotic inhibitor]]s are used to disrupt normal [[Mitosis|mitotic]] division, which results in the production of polyploid cells. This process can be useful in plant breeding, especially when attempting to introgress germplasm across ploidal levels.<ref>{{cite book |doi=10.1002/9780470380130.ch3 |chapter=Enhancing Crop Gene Pools with Beneficial Traits Using Wild Relatives |title=Plant Breeding Reviews |date=2007 |last1=Dwivedi |first1=Sangam L. |last2=Upadhyaya |first2=Hari D. |last3=Stalker |first3=H. Thomas |last4=Blair |first4=Matthew W. |last5=Bertioli |first5=David J. |last6=Nielen |first6=Stephan |last7=Ortiz |first7=Rodomiro |pages=179–230 |isbn=978-0-470-17152-3 |chapter-url=http://oar.icrisat.org/2546/1/Enhancing_Crop_Gene_Pools.pdf }}</ref> Autopolyploids possess at least three [[homologous chromosome]] sets, which can lead to high rates of multivalent pairing during [[meiosis]] (particularly in recently formed autopolyploids, also known as neopolyploids) and an associated decrease in fertility due to the production of [[Aneuploidy|aneuploid]] gametes.<ref name="Justin_2002">{{Cite journal| vauthors = Justin R |date=January 2002|title=Neopolyploidy in Flowering Plants|journal=Annual Review of Ecology and Systematics|volume=33|issue=1|pages=589–639|doi=10.1146/annurev.ecolsys.33.010802.150437 }}</ref> Natural or artificial selection for fertility can quickly stabilize meiosis in autopolyploids by restoring bivalent pairing during meiosis. Rapid adaptive evolution of the meiotic machinery, resulting in reduced levels of multivalents (and therefore stable autopolyploid meiosis) has been documented in ''Arabidopsis arenosa''<ref>{{Cite journal |last1=Yant |first1=Levi |last2=Hollister |first2=Jesse D. |last3=Wright |first3=Kevin M. |last4=Arnold |first4=Brian J. |last5=Higgins |first5=James D. |last6=Franklin |first6=F. Chris H. |last7=Bomblies |first7=Kirsten |date=November 2013 |title=Meiotic Adaptation to Genome Duplication in Arabidopsis arenosa |url=|journal=Current Biology |volume=23 |issue=21 |pages=2151–2156 |doi=10.1016/j.cub.2013.08.059 |issn=0960-9822 |pmc=3859316 |pmid=24139735|bibcode=2013CBio...23.2151Y }}</ref> and ''Arabidopsis lyrata'',<ref>{{Cite journal |last1=Marburger |first1=Sarah |last2=Monnahan |first2=Patrick |last3=Seear |first3=Paul J. |last4=Martin |first4=Simon H. |last5=Koch |first5=Jordan |last6=Paajanen |first6=Pirita |last7=Bohutínská |first7=Magdalena |last8=Higgins |first8=James D. |last9=Schmickl |first9=Roswitha |last10=Yant |first10=Levi |date=2019-11-18 |title=Interspecific introgression mediates adaptation to whole genome duplication |journal=Nature Communications |language=en |volume=10 |issue=1 |pages=5218 |doi=10.1038/s41467-019-13159-5 |issn=2041-1723 |pmc=6861236 |pmid=31740675|bibcode=2019NatCo..10.5218M }}</ref> with specific adaptive alleles of these species shared between only the evolved polyploids.<ref>{{Cite journal |last1=Marburger |first1=Sarah |last2=Monnahan |first2=Patrick |last3=Seear |first3=Paul J. |last4=Martin |first4=Simon H. |last5=Koch |first5=Jordan |last6=Paajanen |first6=Pirita |last7=Bohutínská |first7=Magdalena |last8=Higgins |first8=James D. |last9=Schmickl |first9=Roswitha |last10=Yant |first10=Levi |date=2019-11-18 |title=Interspecific introgression mediates adaptation to whole genome duplication |journal=Nature Communications |language=en |volume=10 |issue=1 |pages=5218 |doi=10.1038/s41467-019-13159-5 |issn=2041-1723 |pmc=6861236 |pmid=31740675|bibcode=2019NatCo..10.5218M }}</ref><ref>{{Cite journal |last1=Seear |first1=Paul J. |last2=France |first2=Martin G. |last3=Gregory |first3=Catherine L. |last4=Heavens |first4=Darren |last5=Schmickl |first5=Roswitha |last6=Yant |first6=Levi |last7=Higgins |first7=James D. |date=2020-07-15 |editor-last=Grelon |editor-first=Mathilde |title=A novel allele of ASY3 is associated with greater meiotic stability in autotetraploid Arabidopsis lyrata |journal=PLOS Genetics |language=en |volume=16 |issue=7 |pages=e1008900 |doi=10.1371/journal.pgen.1008900 |doi-access=free |issn=1553-7404 |pmc=7392332 |pmid=32667955}}</ref> The high degree of [[Homology (biology)|homology]] among duplicated chromosomes causes autopolyploids to display [[polysomic inheritance]].<ref>{{cite journal | vauthors = Parisod C, Holderegger R, Brochmann C | title = Evolutionary consequences of autopolyploidy | journal = The New Phytologist | volume = 186 | issue = 1 | pages = 5–17 | date = April 2010 | pmid = 20070540 | doi = 10.1111/j.1469-8137.2009.03142.x | doi-access = }}</ref> This trait is often used as a diagnostic criterion to distinguish autopolyploids from allopolyploids, which commonly display disomic inheritance after they progress past the neopolyploid stage.<ref name="Le Comber_2010">{{cite journal | vauthors = Le Comber SC, Ainouche ML, Kovarik A, Leitch AR | title = Making a functional diploid: from polysomic to disomic inheritance | journal = The New Phytologist | volume = 186 | issue = 1 | pages = 113–122 | date = April 2010 | pmid = 20028473 | doi = 10.1111/j.1469-8137.2009.03117.x | doi-access = }}</ref> While most polyploid species are unambiguously characterized as either autopolyploid or allopolyploid, these categories represent the ends of a spectrum of divergence between parental subgenomes. Polyploids that fall between these two extremes, which are often referred to as segmental allopolyploids, may display intermediate levels of polysomic inheritance that vary by locus.<ref>{{Cite book| vauthors = Stebbins GL |title=Types of polyploids; their classification and significance|year=1947|isbn=9780120176014|series=Advances in Genetics|volume=1|pages=403–429|language=en|doi=10.1016/s0065-2660(08)60490-3|pmid=20259289}}</ref><ref>{{Cite book| vauthors = Stebbins GL |title=Variation and Evolution in Plants|publisher=Oxford University Press|year=1950}}{{page needed|date=March 2019}}</ref> About half of all polyploids are thought to be the result of autopolyploidy,<ref>{{Cite journal| vauthors = Ramsey J, Schemske DW |date= January 1998 |title=Pathways, Mechanisms, and Rates of Polyploid Formation in Flowering Plants|journal=Annual Review of Ecology and Systematics|volume=29|issue=1|pages=467–501|doi=10.1146/annurev.ecolsys.29.1.467 }}</ref><ref>{{cite journal | vauthors = Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA | title = On the relative abundance of autopolyploids and allopolyploids | journal = The New Phytologist | volume = 210 | issue = 2 | pages = 391–398 | date = April 2016 | pmid = 26439879 | doi = 10.1111/nph.13698 | doi-access = free }}</ref> although many factors make this proportion hard to estimate.<ref>{{cite journal | vauthors = Doyle JJ, Sherman-Broyles S | title = Double trouble: taxonomy and definitions of polyploidy | journal = The New Phytologist | volume = 213 | issue = 2 | pages = 487–493 | date = January 2017 | pmid = 28000935 | doi = 10.1111/nph.14276 | doi-access = free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)