Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Post correspondence problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Example 1=== Consider the following two lists: {{col-begin|width=auto}} {{col-break}} {| class="wikitable" style="text-align:center;background:#55FF83;font-style:italic;" |-style="font-weight:bold;" |width=40 | α<sub>1</sub> |width=40 | α<sub>2</sub> |width=40 | α<sub>3</sub> |- |a |ab |bba |} {{col-break|gap=5px|align=center}} {| class="wikitable" style="text-align:center;background:#87E6FF;font-style:italic;" |-style="font-weight:bold;" |width=40 | β<sub>1</sub> |width=40 | β<sub>2</sub> |width=40 | β<sub>3</sub> |- |baa |aa |bb |} {{col-end}} A solution to this problem would be the sequence (3, 2, 3, 1), because : <math>\alpha_3 \alpha_2 \alpha_3 \alpha_1 = bba \cdot ab \cdot bba \cdot a = bbaabbbaa = bb \cdot aa \cdot bb \cdot baa = \beta_{3} \beta_{2} \beta_{3} \beta_{1}.</math> Furthermore, since (3, 2, 3, 1) is a solution, so are all of its "repetitions", such as (3, 2, 3, 1, 3, 2, 3, 1), etc.; that is, when a solution exists, there are infinitely many solutions of this repetitive kind. However, if the two lists had consisted of only <math>\alpha_2, \alpha_3</math> and <math>\beta_{2}, \beta_{3}</math> from those sets, then there would have been no solution (the last letter of any such α string is not the same as the letter before it, whereas β only constructs pairs of the same letter). A convenient way to view an instance of a Post correspondence problem is as a collection of blocks of the form {{col-begin|width=auto}} {{col-break}} {| class="wikitable" style="text-align:center;font-style:italic;font-weight:bold;" | bgcolor="#55FF83" width="40" | α<sub>i</sub> |- | bgcolor="#87E6FF" width="40" | β<sub>i</sub> |} {{col-end}} there being an unlimited supply of each type of block. Thus the above example is viewed as {{col-begin|width=auto}} {{col-break|align=center}} {| class="wikitable" style="font-style:italic;text-align:center;" | bgcolor="#55FF83" width="40" | a |- | bgcolor="#87E6FF" width="40" | baa |} ''i = 1'' {{col-break|gap=5px|align=center}} {| class="wikitable" style="font-style:italic;text-align:center;" | bgcolor="#55FF83" width="40" | ab |- | bgcolor="#87E6FF" width="40" | aa |} ''i = 2'' {{col-break|gap=5px|align=center}} {| class="wikitable" style="font-style:italic;text-align:center;" | bgcolor="#55FF83" width="40" | bba |- | bgcolor="#87E6FF" width="40" | bb |} ''i = 3'' {{col-end}} where the solver has an endless supply of each of these three block types. A solution corresponds to some way of laying blocks next to each other so that the string in the top cells corresponds to the string in the bottom cells. Then the solution to the above example corresponds to: {{col-begin|width=auto}} {{col-break|align=center}} {| class="wikitable" style="font-style:italic;text-align:center;" | bgcolor="#55FF83" width="40" | bba |- | bgcolor="#87E6FF" width="40" | bb |} ''i<sub>1</sub> = 3'' {{col-break|gap=5px|align=center}} {| class="wikitable" style="font-style:italic;text-align:center;" | bgcolor="#55FF83" width="40" | ab |- | bgcolor="#87E6FF" width="40" | aa |} ''i<sub>2</sub> = 2'' {{col-break|gap=5px|align=center}} {| class="wikitable" style="font-style:italic;text-align:center;" | bgcolor="#55FF83" width="40" | bba |- | bgcolor="#87E6FF" width="40" | bb |} ''i<sub>3</sub> = 3'' {{col-break|gap=5px|align=center}} {| class="wikitable" style="font-style:italic;text-align:center;" | bgcolor="#55FF83" width="40" | a |- | bgcolor="#87E6FF" width="40" | baa |} ''i<sub>4</sub> = 1'' {{col-end}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)