Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Power rule
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proofs for integer exponents=== ====Proof by [[mathematical induction|induction]] (natural numbers)==== Let <math>n\in\N</math>. It is required to prove that <math>\frac{d}{dx} x^n = nx^{n-1}.</math> The base case may be when <math>n=0</math> or <math>1</math>, depending on how the set of [[Natural number|natural numbers]] is defined. When <math>n=0</math>, <math>\frac{d}{dx} x^0 = \frac{d}{dx} (1) = \lim_{h \to 0}\frac{1-1}{h} = \lim_{h \to 0}\frac{0}{h} = 0 = 0x^{0-1}.</math> When <math>n=1</math>, <math>\frac{d}{dx} x^1 = \lim_{h \to 0}\frac{(x+h)-x}{h} = \lim_{h \to 0}\frac{h}{h} = 1 = 1x^{1-1}.</math> Therefore, the base case holds either way. Suppose the statement holds for some natural number ''k'', i.e. <math>\frac{d}{dx}x^k = kx^{k-1}.</math> When <math>n=k+1</math>,<math display="block">\frac{d}{dx}x^{k+1} = \frac{d}{dx}(x^k \cdot x) = x^k \cdot \frac{d}{dx}x + x \cdot \frac{d}{dx}x^k = x^k + x \cdot kx^{k-1} = x^k + kx^k = (k+1)x^k = (k+1)x^{(k+1)-1}</math>By the principle of mathematical induction, the statement is true for all natural numbers ''n''. ====Proof by [[binomial theorem]] (natural number)==== Let <math>y=x^n</math>, where <math>n\in \mathbb{N} </math>. Then,<math display="block">\begin{align} \frac{dy}{dx} &=\lim_{h\to 0}\frac{(x+h)^n-x^n}h\\[4pt] &=\lim_{h\to 0}\frac{1}{h} \left[x^n+\binom n1 x^{n-1}h+\binom n2 x^{n-2}h^2+\dots+\binom nn h^n-x^n \right]\\[4pt] &=\lim_{h\to 0}\left[\binom n 1 x^{n-1} + \binom n2 x^{n-2}h+ \dots+\binom nn h^{n-1}\right]\\[4pt] &=nx^{n-1} \end{align}</math> Since n choose 1 is equal to n, and the rest of the terms all contain h, which is 0, the rest of the terms cancel. This proof only works for natural numbers as the binomial theorem only works for natural numbers. ====Generalization to negative integer exponents==== For a negative integer ''n'', let <math>n=-m</math> so that ''m'' is a positive integer. Using the [[reciprocal rule]],<math display="block">\frac{d}{dx}x^n = \frac{d}{dx} \left(\frac{1}{x^m}\right) = \frac{-\frac{d}{dx}x^m}{(x^m)^2} = -\frac{mx^{m-1}}{x^{2m}} = -mx^{-m-1} = nx^{n-1}.</math>In conclusion, for any integer <math>n</math>, <math>\frac{d}{dx}x^n = nx^{n-1}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)