Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Prime-counting function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Table of {{math|''Ο''(''x'')}}, {{math|{{sfrac|''x''|log ''x'' }}}}, and {{math|li(''x'')}}== The table shows how the three functions {{math|''Ο''(''x'')}}, {{math|{{sfrac|''x''|log ''x''}}}}, and {{math|li(''x'')}} compared at powers of 10. See also,<ref name="Caldwell" /><ref name="Silva">{{cite web |title=Tables of values of {{math|''Ο''(''x'')}} and of {{math|''Ο''<sub>2</sub>(''x'')}} |url=https://sweet.ua.pt/tos/primes.html |publisher=TomΓ‘s Oliveira e Silva |access-date=2024-03-31}}</ref> and<ref name="Gourdon">{{cite web |title=A table of values of {{math|''Ο''(''x'')}} |url=http://numbers.computation.free.fr/Constants/Primes/pixtable.html |publisher=Xavier Gourdon, Pascal Sebah, Patrick Demichel |access-date=2008-09-14}}</ref> :{| class="wikitable" style="text-align: right" ! {{mvar|x}} ! {{math|''Ο''(''x'')}} ! {{math|''Ο''(''x'') β {{sfrac|''x''|log ''x''}}}} ! {{math|li(''x'') β ''Ο''(''x'')}} ! {{math|{{sfrac|''x''|''Ο''(''x'')}}}} !{{math|{{sfrac|''x''|log ''x''}}}}<br> % error |- | 10 | 4 | 0 | 2 | 2.500 | β8.57% |- | 10<sup>2</sup> | 25 | 3 | 5 | 4.000 | +13.14% |- | 10<sup>3</sup> | 168 | 23 | 10 | 5.952 | +13.83% |- | 10<sup>4</sup> | 1,229 | 143 | 17 | 8.137 | +11.66% |- | 10<sup>5</sup> | 9,592 | 906 | 38 | 10.425 | +9.45% |- | 10<sup>6</sup> | 78,498 | 6,116 | 130 | 12.739 | +7.79% |- | 10<sup>7</sup> | 664,579 | 44,158 | 339 | 15.047 | +6.64% |- | 10<sup>8</sup> | 5,761,455 | 332,774 | 754 | 17.357 | +5.78% |- | 10<sup>9</sup> | 50,847,534 | 2,592,592 | 1,701 | 19.667 | +5.10% |- | 10<sup>10</sup> | 455,052,511 | 20,758,029 | 3,104 | 21.975 | +4.56% |- | 10<sup>11</sup> | 4,118,054,813 | 169,923,159 | 11,588 | 24.283 | +4.13% |- | 10<sup>12</sup> | 37,607,912,018 | 1,416,705,193 | 38,263 | 26.590 | +3.77% |- | 10<sup>13</sup> | 346,065,536,839 | 11,992,858,452 | 108,971 | 28.896 | +3.47% |- | 10<sup>14</sup> | 3,204,941,750,802 | 102,838,308,636 | 314,890 | 31.202 | +3.21% |- | 10<sup>15</sup> | 29,844,570,422,669 | 891,604,962,452 | 1,052,619 | 33.507 | +2.99% |- | 10<sup>16</sup> | 279,238,341,033,925 | 7,804,289,844,393 | 3,214,632 | 35.812 | +2.79% |- | 10<sup>17</sup> | 2,623,557,157,654,233 | 68,883,734,693,928 | 7,956,589 | 38.116 | +2.63% |- | 10<sup>18</sup> | 24,739,954,287,740,860 | 612,483,070,893,536 | 21,949,555 | 40.420 | +2.48% |- | 10<sup>19</sup> | 234,057,667,276,344,607 | 5,481,624,169,369,961 | 99,877,775 | 42.725 | +2.34% |- | 10<sup>20</sup> | 2,220,819,602,560,918,840 | 49,347,193,044,659,702 | 222,744,644 | 45.028 | +2.22% |- | 10<sup>21</sup> | 21,127,269,486,018,731,928 | 446,579,871,578,168,707 | 597,394,254 | 47.332 | +2.11% |- | 10<sup>22</sup> | 201,467,286,689,315,906,290 | 4,060,704,006,019,620,994 | 1,932,355,208 | 49.636 | +2.02% |- | 10<sup>23</sup> | 1,925,320,391,606,803,968,923 | 37,083,513,766,578,631,309 | 7,250,186,216 | 51.939 | +1.93% |- | 10<sup>24</sup> | 18,435,599,767,349,200,867,866 | 339,996,354,713,708,049,069 | 17,146,907,278 | 54.243 | +1.84% |- | 10<sup>25</sup> | 176,846,309,399,143,769,411,680 | 3,128,516,637,843,038,351,228 | 55,160,980,939 | 56.546 | +1.77% |- | 10<sup>26</sup> | 1,699,246,750,872,437,141,327,603 | 28,883,358,936,853,188,823,261 | 155,891,678,121 | 58.850 | +1.70% |- | 10<sup>27</sup> | 16,352,460,426,841,680,446,427,399 | 267,479,615,610,131,274,163,365 | 508,666,658,006 | 61.153 | +1.64% |- | 10<sup>28</sup> | 157,589,269,275,973,410,412,739,598 | 2,484,097,167,669,186,251,622,127 | 1,427,745,660,374 | 63.456 | +1.58% |- | 10<sup>29</sup> | 1,520,698,109,714,272,166,094,258,063 | 23,130,930,737,541,725,917,951,446 | 4,551,193,622,464 | 65.759 | +1.52% |} [[File:Prime number theorem ratio convergence.svg|thumb|300px|Graph showing ratio of the prime-counting function {{math|''Ο''(''x'')}} to two of its approximations, {{math|{{sfrac|''x''|log ''x''}}}} and {{math|Li(''x'')}}. As {{mvar|x}} increases (note {{mvar|x}}-axis is logarithmic), both ratios tend towards 1. The ratio for {{math|{{sfrac|''x''|log ''x''}}}} converges from above very slowly, while the ratio for {{math|Li(''x'')}} converges more quickly from below.]] In the [[On-Line Encyclopedia of Integer Sequences]], the {{math|''Ο''(''x'')}} column is sequence {{OEIS2C|id=A006880}}, {{math| ''Ο''(''x'') β {{sfrac|''x''|log ''x''}}}} is sequence {{OEIS2C|id=A057835}}, and {{math|li(''x'') β ''Ο''(''x'')}} is sequence {{OEIS2C|id=A057752}}. The value for {{math|''Ο''(10<sup>24</sup>)}} was originally computed by J. Buethe, [[Jens Franke|J. Franke]], A. Jost, and T. Kleinjung assuming the [[Riemann hypothesis]].<ref name="Franke">{{cite web |title=Conditional Calculation of Ο(10<sup>24</sup>) |first=Jens |last=Franke |author-link=Jens Franke |date=2010-07-29 |url=https://t5k.org/notes/pi(10to24).html |publisher=Chris K. Caldwell |access-date=2024-03-30}}</ref> It was later verified unconditionally in a computation by D. J. Platt.<ref name="Platt2012">{{cite journal |title=Computing {{math|''Ο''(''x'')}} Analytically |arxiv=1203.5712 |last1=Platt |first1=David J. |journal=Mathematics of Computation |volume=84 |issue=293 |date=May 2015 |orig-date=March 2012 |pages=1521β1535 |doi=10.1090/S0025-5718-2014-02884-6 |doi-access=free}}</ref> The value for {{math|''Ο''(10<sup>25</sup>)}} is by the same four authors.<ref name="Buethe">{{cite web |title=Analytic Computation of the prime-counting Function |url=http://www.math.uni-bonn.de/people/jbuethe/topics/AnalyticPiX.html |publisher=J. Buethe |date=27 May 2014 |access-date=2015-09-01}} Includes 600,000 value of {{math|''Ο''(''x'')}} for {{math|10<sup>14</sup> β€ ''x'' β€ 1.6Γ10<sup>18</sup>}}</ref> The value for {{math|''Ο''(10<sup>26</sup>)}} was computed by D. B. Staple.<ref name="Staple">{{cite thesis |title=The combinatorial algorithm for computing Ο(x) |date=19 August 2015 |url=http://dalspace.library.dal.ca/handle/10222/60524 |publisher=Dalhousie University |access-date=2015-09-01|type=Thesis |last1=Staple |first1=Douglas }}</ref> All other prior entries in this table were also verified as part of that work. The values for 10<sup>27</sup>, 10<sup>28</sup>, and 10<sup>29</sup> were announced by David Baugh and Kim Walisch in 2015,<ref>{{cite web|website=Mersenne Forum|first=Kim |last=Walisch|title=New confirmed Ο(10<sup>27</sup>) prime counting function record |date=September 6, 2015|url=http://www.mersenneforum.org/showthread.php?t=20473}}</ref> 2020,<ref>{{cite web |last=Baugh |first=David |date=August 30, 2020 |title=New prime counting function record, pi(10^28) |url=https://www.mersenneforum.org/showpost.php?p=555434&postcount=28 |website=Mersenne Forum}}</ref> and 2022,<ref>{{cite web |first=Kim |last=Walisch |date=March 4, 2022 |title=New prime counting function record: PrimePi(10^29) |url=https://www.mersenneforum.org/showpost.php?p=601061&postcount=38 |website=Mersenne Forum}}</ref> respectively.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)