Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Prion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== PrP<sup>C</sup> ==== PrP<sup>C</sup> is a normal protein found on the [[cell membrane|membranes]] of [[cell (biology)|cells]], "including several blood components of which [[platelets]] constitute the largest reservoir in humans."<ref name="robertson06">{{cite journal | vauthors = Robertson C, Booth SA, Beniac DR, Coulthart MB, Booth TF, McNicol A | title = Cellular prion protein is released on exosomes from activated platelets | journal = Blood | volume = 107 | issue = 10 | pages = 3907–11 | date = May 2006 | pmid = 16434486 | doi = 10.1182/blood-2005-02-0802 | s2cid = 34141310 | doi-access = free }}</ref> It has 209 [[amino acid]]s (in humans), one [[disulfide bond]], a molecular mass of 35–36 [[Atomic mass unit|kDa]] and a mainly [[alpha helix|alpha-helical]] structure.<ref>{{cite journal | vauthors = Riek R, Hornemann S, Wider G, Glockshuber R, Wüthrich K | title = NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231) | journal = FEBS Letters | volume = 413 | issue = 2 | pages = 282–8 | date = August 1997 | pmid = 9280298 | doi = 10.1016/S0014-5793(97)00920-4 | s2cid = 39791520 | bibcode = 1997FEBSL.413..282R | url = https://www.zora.uzh.ch/id/eprint/191727/1/S0014-5793%2897%2900920-4.pdf }}</ref><ref>{{cite journal | vauthors = Donne DG, Viles JH, Groth D, Mehlhorn I, James TL, Cohen FE, Prusiner SB, Wright PE, Dyson HJ | title = Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 94 | issue = 25 | pages = 13452–7 | date = December 1997 | pmid = 9391046 | pmc = 28326 | doi = 10.1073/pnas.94.25.13452 | doi-access = free | bibcode = 1997PNAS...9413452D }}</ref> Several [[Protein topology|topological]] forms exist; one cell surface form anchored via [[glycolipid]] and two [[transmembrane]] forms.<ref>{{cite journal | vauthors = Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Tremblay P, Torchia M, DeArmond SJ, Prusiner SB, Lingappa VR | title = A transmembrane form of the prion protein in neurodegenerative disease | journal = Science | volume = 279 | issue = 5352 | pages = 827–834 | date = February 1998 | pmid = 9452375 | doi = 10.1126/science.279.5352.827 | url = http://pdfs.semanticscholar.org/4320/9efc152784dbc7f0b9a1300d0ec9be602a2c.pdf | url-status = dead | s2cid = 20176119 | bibcode = 1998Sci...279..827H | archive-url = https://web.archive.org/web/20190223062543/http://pdfs.semanticscholar.org/4320/9efc152784dbc7f0b9a1300d0ec9be602a2c.pdf | archive-date = 2019-02-23 }}</ref> The normal protein is not sedimentable; meaning that it cannot be separated by [[Laboratory centrifuge|centrifuging techniques]].<ref name=Krull>{{cite book | vauthors = Carp RI, Kascap RJ | chapter = Taking aim at the transmissible spongiform encephalopathie's infectious agents | veditors = Krull IS, Nunnally BK | title = Prions and mad cow disease | publisher = Marcel Dekker | location = New York | year = 2004 | page = 6 | isbn = 978-0-8247-4083-2 | chapter-url = https://books.google.com/books?id=WjeuaHopV5UC&pg=PA6 | access-date = 2020-06-02 | archive-date = 2020-08-20 | archive-url = https://web.archive.org/web/20200820011006/https://books.google.com/books?id=WjeuaHopV5UC&pg=PA6 | url-status = live }}</ref> It has a complex [[Protein function|function]], which continues to be investigated. PrP<sup>C</sup> [[Chemical bond|binds]] [[copper]](II) [[ion]]s (those in a +2 [[oxidation state]]) with [[high affinity]].<ref>{{cite journal | vauthors = Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H | title = The cellular prion protein binds copper in vivo | journal = Nature | volume = 390 | issue = 6661 | pages = 684–7 | year = 1997 | pmid = 9414160 | doi = 10.1038/37783 | s2cid = 4388803 | bibcode = 1997Natur.390..684B }}</ref> This property is supposed to play a role in PrP<sup>C</sup>’s [[anti-oxidative]] properties via reversible [[oxidation]] of the [[Protein structure|N-terminal’s]] [[methionine]] residues into [[sulfoxide]].<ref>{{cite journal |last1=Arcos-López |first1=Trinidad |title=Spectroscopic and Theoretical Study of CuI Binding to His111 in the Human Prion Protein Fragment 106–115 |journal=Organic Chemistry 2016 |date=1 March 2016 |volume=55 |issue=Inorganic Chemistry 2016 |pages=2909–22 |doi=10.1021/acs.inorgchem.5b02794 |pmid=26930130 |pmc=4804749 |hdl=11336/52826 |hdl-access=free }}</ref> Moreover, studies have suggested that, [[in vivo]], due to PrP<sup>C</sup>’s low [[Binding selectivity|selectivity]] to metallic substrates, the protein’s anti oxidative function is impaired when in contact with metals other than [[copper]].<ref>{{cite journal |last1=Wong |first1=Boon-Seng |title=A Yin-Yang role for metals in prion disease |journal=Panminerva Medica (2001) |date=December 2001 |volume=43 |issue=4 |pages=283–7 |pmid=11677424 |url=https://pubmed.ncbi.nlm.nih.gov/11677424/ |access-date=12 November 2024}}</ref> PrP<sup>C</sup> is readily [[Digestion|digested]] by [[proteinase K]] and can be [[Exocytosis|liberated]] from the cell surface by the enzyme [[phospholipase C|phosphoinositide phospholipase C]] (PI-PLC), which [[Bond cleavage|cleaves]] the [[glycophosphatidylinositol]] (GPI) glycolipid anchor.<ref name="weissmann">{{cite journal | vauthors = Weissmann C | title = The state of the prion | journal = Nature Reviews. Microbiology | volume = 2 | issue = 11 | pages = 861–871 | date = November 2004 | pmid = 15494743 | doi = 10.1038/nrmicro1025 | s2cid = 20992257 }}</ref> PrP plays an important role in [[cell-cell adhesion]] and [[intracellular signaling]] ''in vivo'',<ref>{{cite journal | vauthors = Málaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, Stuermer CA | title = Regulation of embryonic cell adhesion by the prion protein | journal = PLOS Biology | volume = 7 | issue = 3 | pages = e55 | date = March 2009 | pmid = 19278297 | pmc = 2653553 | doi = 10.1371/journal.pbio.1000055 | veditors = Weissmann C | doi-access = free }}</ref> and may therefore be involved in cell-cell communication in the brain.<ref>{{Cite journal | vauthors = Liebert A, Bicknell B, Adams R |date=2014 |title=Prion Protein Signaling in the Nervous System—A Review and Perspective |journal=Signal Transduction Insights |language=en |volume=3 |pages=STI.S12319 |doi=10.4137/STI.S12319 |issn=1178-6434|doi-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)