Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Propagation of uncertainty
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example === Any non-linear differentiable function, <math>f(a,b)</math>, of two variables, <math>a</math> and <math>b</math>, can be expanded as <math display="block">f\approx f^0+\frac{\partial f}{\partial a}a+\frac{\partial f}{\partial b}b.</math> If we take the variance on both sides and use the formula<ref>{{Cite web| last=Soch|first=Joram| date=2020-07-07| title=Variance of the linear combination of two random variables|url=https://statproofbook.github.io/P/var-lincomb.html| access-date=2022-01-29| website=The Book of Statistical Proofs|language=en}}</ref> for the variance of a linear combination of variables <math display="block">\operatorname{Var}(aX + bY) = a^2\operatorname{Var}(X) + b^2\operatorname{Var}(Y) + 2ab \operatorname{Cov}(X, Y),</math> then we obtain <math display="block">\sigma^2_f\approx\left| \frac{\partial f}{\partial a}\right| ^2\sigma^2_a+\left| \frac{\partial f}{\partial b}\right|^2\sigma^2_b+2\frac{\partial f}{\partial a}\frac{\partial f} {\partial b}\sigma_{ab},</math> where <math>\sigma_{f}</math> is the standard deviation of the function <math>f</math>, <math>\sigma_{a}</math> is the standard deviation of <math>a</math>, <math>\sigma_{b}</math> is the standard deviation of <math>b</math> and <math>\sigma_{ab} = \sigma_{a}\sigma_{b} \rho_{ab}</math> is the covariance between <math>a</math> and <math>b</math>. In the particular case that {{nowrap|<math>f = ab</math>,}} {{nowrap|<math>\frac{\partial f}{\partial a} = b</math>,}} {{nowrap|<math>\frac{\partial f}{\partial b} = a</math>.}} Then <math display="block">\sigma^2_f \approx b^2\sigma^2_a+a^2 \sigma_b^2+2ab\,\sigma_{ab}</math> or <math display="block">\left(\frac{\sigma_f}{f}\right)^2 \approx \left(\frac{\sigma_a}{a} \right)^2 + \left(\frac{\sigma_b}{b}\right)^2 + 2\left(\frac{\sigma_a}{a}\right)\left(\frac{\sigma_b}{b}\right)\rho_{ab}</math> where <math>\rho_{ab}</math> is the correlation between <math>a</math> and <math>b</math>. When the variables <math>a</math> and <math>b</math> are uncorrelated, <math>\rho_{ab}=0</math>. Then <math display="block">\left(\frac{\sigma_f}{f}\right)^2 \approx \left(\frac{\sigma_a}{a} \right)^2 + \left(\frac{\sigma_b}{b}\right)^2.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)