Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pyrenoid
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Molecular components === In ''Chlamydomonas'', specifically the model alga ''[[Chlamydomonas reinhardtii]]'': * Mutagenic work has shown that the RuBisCO small subunit is important for pyrenoid matrix assembly,<ref>Genkov, T., Meyer, M., Griffiths, H., & Spreitzer, R. J. (2010). Functional hybrid rubisco enzymes with plant small subunits and algal large subunits engineered ''RBCS'' cDNA for expression in ''Chlamydomonas''. ''Journal of Biological Chemistry'',285(26), 19833-19841 {{PMID|20424165}}</ref> and that two solvent exposed alpha-helices of the RuBisCO small subunit are key to the process.<ref>Meyer, M. T., Genkov, T., Skepper, J. N., Jouhet, J., Mitchell, M. C., Spreitzer, R. J., & Griffiths, H. (2012). RuBisCO small-subunit α-helices control pyrenoid formation in ''Chlamydomonas''. ''Proceedings of the National Academy of Sciences'', 109(47), 19474-19479. {{PMID|23112177}}</ref> * Assembly of RuBisCO into a pyrenoid was shown to require the intrinsically disordered RuBisCO-binding repeat protein EPYC1, which was proposed to "link" multiple RuBisCO holoenzymes together to form the pyrenoid matrix.<ref>{{Cite journal|last1=Mackinder|first1=Luke C. M.|last2=Meyer|first2=Moritz T.|last3=Mettler-Altmann|first3=Tabea|last4=Chen|first4=Vivian K.|last5=Mitchell|first5=Madeline C.|last6=Caspari|first6=Oliver|last7=Rosenzweig|first7=Elizabeth S. Freeman|last8=Pallesen|first8=Leif|last9=Reeves|first9=Gregory|last10=Itakura|first10=Alan|last11=Roth|first11=Robyn|last12=Sommer|first12=Frederik|last13=Geimer|first13=Stefan|last14=Mühlhaus|first14=Timo|last15=Schroda|first15=Michael|last16=Goodenough|first16=Ursula|last17=Stitt|first17=Mark|last18=Griffiths|first18=Howard|last19=Martin C.|first19=Jonikas|date=2016-05-24|title=A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle|journal=Proceedings of the National Academy of Sciences|language=en|volume=113|issue=21|pages=5958–5963|doi=10.1073/pnas.1522866113|issn=0027-8424|pmc=4889370|pmid=27166422|doi-access=free|bibcode=2016PNAS..113.5958M }}</ref> EPYC1 and Rubisco together were shown to be sufficient to reconstitute phase-separated droplets that show similar properties to ''C. reinhardtii'' pyrenoids in vivo, further supporting a "linker" role for EPYC1.<ref>{{Cite journal|last1=Wunder|first1=Tobias|last2=Cheng|first2=Steven Le Hung|last3=Lai|first3=Soak-Kuan|last4=Li|first4=Hoi-Yeung|last5=Mueller-Cajar|first5=Oliver|date=2018-11-29|title=The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger|url=https://www.nature.com/articles/s41467-018-07624-w|journal=Nature Communications|language=en|volume=9|issue=1|pages=5076|doi=10.1038/s41467-018-07624-w|issn=2041-1723|pmc=6265248|pmid=30498228|bibcode=2018NatCo...9.5076W}}</ref> * SAGA1 and MITH1 are each necessary for the appearance of matrix-traversing membranes in the pyrenoid; combined they are sufficient for such membranes to appear, even when introduced into the model "higher" land plant ''[[Arabidopsis thaliana]]''. Without those matrix-traversing membrane "tubules", there would be no way for {{CO2}} to enter the pyrenoid.<ref>{{cite journal |last1=Hennacy |first1=Jessica H. |last2=Atkinson |first2=Nicky |last3=Kayser-Browne |first3=Angelo |last4=Ergun |first4=Sabrina L. |last5=Franklin |first5=Eric |last6=Wang |first6=Lianyong |last7=Eicke |first7=Simona |last8=Kazachkova |first8=Yana |last9=Kafri |first9=Moshe |last10=Fauser |first10=Friedrich |last11=Vilarrasa-Blasi |first11=Josep |last12=Jinkerson |first12=Robert E. |last13=Zeeman |first13=Samuel C. |last14=McCormick |first14=Alistair J. |last15=Jonikas |first15=Martin C. |title=SAGA1 and MITH1 produce matrix-traversing membranes in the CO2-fixing pyrenoid |journal=Nature Plants |date=15 November 2024 |doi=10.1038/s41477-024-01847-0 |doi-access=free|pmc=11649565}}</ref> The proteome of the ''Chlamydomonas'' pyrenoid has been characterized,<ref>{{Cite journal|last1=Zhan|first1=Yu|last2=Marchand|first2=Christophe H.|last3=Maes|first3=Alexandre|last4=Mauries|first4=Adeline|last5=Sun|first5=Yi|last6=Dhaliwal|first6=James S.|last7=Uniacke|first7=James|last8=Arragain|first8=Simon|last9=Jiang|first9=Heng|last10=Gold|first10=Nicholas D.|last11=Martin|first11=Vincent J. J.|date=2018-02-26|title=Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii|journal=PLOS ONE|language=en|volume=13|issue=2|pages=e0185039|doi=10.1371/journal.pone.0185039|issn=1932-6203|pmc=5826530|pmid=29481573|doi-access=free|bibcode=2018PLoSO..1385039Z }}</ref> and the localizations and protein-protein interactions of dozens of pyrenoid-associated proteins were systematically determined.<ref>{{Cite journal|last1=Mackinder|first1=Luke C. M.|last2=Chen|first2=Chris|last3=Leib|first3=Ryan D.|last4=Patena|first4=Weronika|last5=Blum|first5=Sean R.|last6=Rodman|first6=Matthew|last7=Ramundo|first7=Silvia|last8=Adams|first8=Christopher M.|last9=Jonikas|first9=Martin C.|date=2017-09-21|title=A Spatial Interactome Reveals the Protein Organization of the Algal CO2-Concentrating Mechanism|journal=Cell|language=English|volume=171|issue=1|pages=133–147.e14|doi=10.1016/j.cell.2017.08.044|issn=0092-8674|pmid=28938113|pmc=5616186|doi-access=free}}</ref> Proteins localized to the pyrenoid include RuBisCO activase,<ref>McKay, R. M. L., Gibbs, S. P., & Vaughn, K. C. (1991). RuBisCo activase is present in the pyrenoid of green algae. Protoplasma, 162(1), 38-45.</ref> nitrate reductase<ref>Lopez-Ruiz, A., Verbelen, J. P., Roldan, J. M., & Diez, J. (1985). Nitrate reductase of green algae is located in the pyrenoid. ''Plant Physiology'', 79(4), 1006-1010.</ref> and nitrite reductase.<ref>López-Ruiz, A., Verbelen, J. P., Bocanegra, J. A., & Diez, J. (1991). Immunocytochemical localization of nitrite reductase in green algae. ''Plant Physiology'', 96(3), 699-704.</ref> In ''Chlamydomonas'', a high-molecular weight complex of two proteins (LCIB/LCIC) forms an additional concentric layer around the pyrenoid, outside the starch sheath, and this is currently hypothesised to act as a barrier to CO<sub>2</sub>-leakage or to recapture CO<sub>2</sub> that escapes from the pyrenoid.<ref>Yamano, T., Tsujikawa, T., Hatano, K., Ozawa, S. I., Takahashi, Y., & Fukuzawa, H. (2010). Light and low-CO<sub>2</sub>-dependent LCIB–LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in ''Chlamydomonas reinhardtii''. Plant and Cell Physiology, 51(9), 1453-1468.{{PMID|20660228}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)