Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum computing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Unitary operators<span class="anchor" id="gate-application"></span> === {{See also|Unitarity (physics)}} The state of this one-qubit [[quantum memory]] can be manipulated by applying [[quantum logic gate]]s, analogous to how classical memory can be manipulated with [[Logic gate|classical logic gates]]. One important gate for both classical and quantum computation is the NOT gate, which can be represented by a [[Matrix (mathematics)|matrix]] <math display="block">X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.</math> Mathematically, the application of such a logic gate to a quantum state vector is modelled with [[matrix multiplication]]. Thus : <math>X|0\rangle = |1\rangle</math> and <math>X|1\rangle = |0\rangle</math>. The mathematics of single qubit gates can be extended to operate on multi-qubit quantum memories in two important ways. One way is simply to select a qubit and apply that gate to the target qubit while leaving the remainder of the memory unaffected. Another way is to apply the gate to its target only if another part of the memory is in a desired state. These two choices can be illustrated using another example. The possible states of a two-qubit quantum memory are <math display="block"> |00\rangle := \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix};\quad |01\rangle := \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix};\quad |10\rangle := \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix};\quad |11\rangle := \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}. </math> The [[Controlled NOT gate|controlled NOT (CNOT)]] gate can then be represented using the following matrix: <math display="block"> \operatorname{CNOT} := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}. </math> As a mathematical consequence of this definition, <math display="inline">\operatorname{CNOT}|00\rangle = |00\rangle</math>, <math display="inline">\operatorname{CNOT}|01\rangle = |01\rangle</math>, <math display="inline">\operatorname{CNOT}|10\rangle = |11\rangle</math>, and <math display="inline">\operatorname{CNOT}|11\rangle = |10\rangle</math>. In other words, the CNOT applies a NOT gate (<math display="inline">X</math> from before) to the second qubit if and only if the first qubit is in the state <math display="inline">|1\rangle</math>. If the first qubit is <math display="inline">|0\rangle</math>, nothing is done to either qubit. In summary, quantum computation can be described as a network of quantum logic gates and measurements. However, any [[deferred measurement principle|measurement can be deferred]] to the end of quantum computation, though this deferment may come at a computational cost, so most [[quantum circuit]]s depict a network consisting only of quantum logic gates and no measurements.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)