Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum harmonic oscillator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Analytical questions==== The preceding analysis is algebraic, using only the commutation relations between the raising and lowering operators. Once the algebraic analysis is complete, one should turn to analytical questions. First, one should find the ground state, that is, the solution of the equation <math>a\psi_0 = 0</math>. In the position representation, this is the first-order differential equation <math display="block">\left(x+\frac{\hbar}{m\omega}\frac{d}{dx}\right)\psi_0 = 0,</math> whose solution is easily found to be the [[Gaussian_function|Gaussian]]<ref group="nb">The normalization constant is <math>C = \left(\frac{m\omega}{\pi \hbar}\right)^{{1}/{4}}</math>, and satisfies the normalization condition <math>\int_{-\infty}^{\infty}\psi_0(x)^{*}\psi_0(x)dx = 1</math>.</ref> <math display="block">\psi_0(x)=Ce^{-\frac{m\omega x^2}{2\hbar}}.</math> Conceptually, it is important that there is only one solution of this equation; if there were, say, two linearly independent ground states, we would get two independent chains of eigenvectors for the harmonic oscillator. Once the ground state is computed, one can show inductively that the excited states are Hermite polynomials times the Gaussian ground state, using the explicit form of the raising operator in the position representation. One can also prove that, as expected from the uniqueness of the ground state, the Hermite functions energy eigenstates <math>\psi_n</math> constructed by the ladder method form a ''complete'' orthonormal set of functions.<ref>{{citation|first=Brian C.|last=Hall | title=Quantum Theory for Mathematicians|series=Graduate Texts in Mathematics|volume=267|isbn=978-1461471158 |publisher=Springer|year=2013 |bibcode=2013qtm..book.....H | at = Theorem 11.4}}</ref> Explicitly connecting with the previous section, the ground state |0β© in the position representation is determined by <math> a| 0\rangle =0</math>, <math display="block"> \left\langle x \mid a \mid 0 \right\rangle = 0 \qquad \Rightarrow \left(x + \frac{\hbar}{m\omega}\frac{d}{dx}\right)\left\langle x\mid 0\right\rangle = 0 \qquad \Rightarrow </math> <math display="block"> \left\langle x\mid 0\right\rangle = \left(\frac{m\omega}{\pi\hbar}\right)^\frac{1}{4} \exp\left( -\frac{m\omega}{2\hbar}x^2 \right) = \psi_0 ~,</math> hence <math display="block"> \langle x \mid a^\dagger \mid 0 \rangle = \psi_1 (x) ~,</math> so that <math>\psi_1(x,t)=\langle x \mid e^{-3i\omega t/2} a^\dagger \mid 0 \rangle </math>, and so on.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)