Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quaternion group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Matrix representations == [[File:Quaternion group; Cayley table; subgroup of SL(2,C).svg|thumb|Multiplication table of quaternion group as a subgroup of [[Special linear group|SL]](2,[[Complex number|'''C''']]). The entries are represented by sectors corresponding to their arguments: 1 (green), ''i'' (blue), β1 (red), β''i'' (yellow).]] The two-dimensional irreducible complex [[group representation|representation]] described above gives the quaternion group Q<sub>8</sub> as a subgroup of the [[general linear group]] <math>\operatorname{GL}(2, \C)</math>. The quaternion group is a multiplicative subgroup of the quaternion algebra: :<math>\H = \R 1 + \R i + \R j + \R k= \C 1+ \C j,</math> which has a [[regular representation]] <math>\rho:\H \to \operatorname{M}(2, \C)</math> by left multiplication on itself considered as a complex vector space with basis <math>\{1,j\},</math> so that <math>z \in \H</math> corresponds to the <math>\C</math>-linear mapping <math>\rho_z: a + jb \mapsto z\cdot(a + jb).</math> The resulting representation :<math>\begin{cases} \rho:\mathrm{Q}_8 \to \operatorname{GL}(2,\C)\\ g\longmapsto\rho_g \end{cases}</math> is given by: :<math>\begin{matrix} e \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & i \mapsto \begin{pmatrix} i & 0 \\ 0 & \!\!\!\!-i \end{pmatrix}& j \mapsto \begin{pmatrix} 0 & \!\!\!\!-1 \\ 1 & 0 \end{pmatrix}& k \mapsto \begin{pmatrix} 0 & \!\!\!\!-i \\ \!\!\!-i & 0 \end{pmatrix} \\ \overline{e} \mapsto \begin{pmatrix} \!\!\!-1 & 0 \\ 0 & \!\!\!\!-1 \end{pmatrix} & \overline{i} \mapsto \begin{pmatrix} \!\!\!-i & 0 \\ 0 & i \end{pmatrix}& \overline{j} \mapsto \begin{pmatrix} 0 & 1 \\ \!\!\!-1 & 0 \end{pmatrix}& \overline{k} \mapsto \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}. \end{matrix} </math> Since all of the above matrices have unit determinant, this is a representation of Q<sub>8</sub> in the [[special linear group]] <math>\operatorname{SL}(2,\C)</math>.<ref>{{harvnb|Artin|1991}}</ref> A variant gives a representation by [[Unitary matrix|unitary matrices]] (table at right). Let <math>g\in \mathrm{Q}_8</math> correspond to the linear mapping <math>\rho_g:a+bj\mapsto (a + bj)\cdot jg^{-1}j^{-1},</math> so that <math>\rho:\mathrm{Q}_8 \to \operatorname{SU}(2)</math> is given by: :<math>\begin{matrix} e \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & i \mapsto \begin{pmatrix} i & 0 \\ 0 & \!\!\!\!-i \end{pmatrix}& j \mapsto \begin{pmatrix} 0 & 1 \\ \!\!\!-1 & 0 \end{pmatrix}& k \mapsto \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \\ \overline{e} \mapsto \begin{pmatrix} \!\!\!-1 & 0 \\ 0 & \!\!\!\!-1 \end{pmatrix} & \overline{i} \mapsto \begin{pmatrix} \!\!\!-i & 0 \\ 0 & i \end{pmatrix}& \overline{j} \mapsto \begin{pmatrix} 0 & \!\!\!\!-1 \\ 1 & 0 \end{pmatrix}& \overline{k} \mapsto \begin{pmatrix} 0 & \!\!\!\!-i \\ \!\!\!-i & 0 \end{pmatrix}. \end{matrix}</math> It is worth noting that physicists exclusively use a different convention for the <math>\operatorname{SU}(2)</math> matrix representation to make contact with the usual [[Spin (physics)#Pauli matrices|Pauli matrices]]: :<math>\begin{matrix} &e \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \quad\, 1_{2\times2} &i \mapsto \begin{pmatrix} 0 & \!\!\!-i\! \\ \!\!-i\!\! & 0 \end{pmatrix} = -i \sigma_x &j \mapsto \begin{pmatrix} 0 & \!\!\!-1\! \\ 1 & 0 \end{pmatrix} = -i \sigma_y &k \mapsto \begin{pmatrix} \!\!-i\!\! & 0 \\ 0 & i \end{pmatrix} = -i \sigma_z\\ &\overline{e} \mapsto \begin{pmatrix} \!\!-1\! & 0 \\ 0 & \!\!\!-1\! \end{pmatrix} = -1_{2\times2} &\overline{i} \mapsto \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \,\,\,\, i \sigma_x &\overline{j} \mapsto \begin{pmatrix} 0 & 1 \\ \!\!-1\!\! & 0 \end{pmatrix} = \,\,\,\, i \sigma_y &\overline{k} \mapsto \begin{pmatrix} i & 0 \\ 0 & \!\!\!-i\! \end{pmatrix} = \,\,\,\, i \sigma_z. \end{matrix}</math> This particular choice is convenient and elegant when one describes [[Spinor|spin-1/2 states]] in the <math>(\vec{J}^2, J_z)</math> basis and considers [[Angular momentum operator#Derivation using ladder operators|angular momentum ladder operators]] <math>J_{\pm} = J_x \pm iJ_y.</math> [[File:Quaternion group; Cayley table; subgroup of SL(2,3).svg|thumb|Multiplication table of the quaternion group as a subgroup of [[:File:SL(2,3); Cayley table.svg|SL(2,3)]]. The field elements are denoted 0, +, β.]] There is also an important action of Q<sub>8</sub> on the 2-dimensional vector space over the [[finite field]] <math>\mathbb{F}_3 =\{0, 1, -1\}</math> (table at right). A [[Modular representation theory|modular representation]] <math>\rho: \mathrm{Q}_8 \to \operatorname{SL}(2, 3)</math> is given by :<math>\begin{matrix} e \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & i \mapsto \begin{pmatrix} 1 & 1 \\ 1 & \!\!\!\!-1 \end{pmatrix} & j \mapsto \begin{pmatrix} \!\!\!-1 & 1 \\ 1 & 1 \end{pmatrix} & k \mapsto \begin{pmatrix} 0 & \!\!\!\!-1 \\ 1 & 0 \end{pmatrix} \\ \overline{e} \mapsto \begin{pmatrix} \!\!\!-1 & 0 \\ 0 & \!\!\!\!-1 \end{pmatrix} & \overline{i} \mapsto \begin{pmatrix} \!\!\!-1 & \!\!\!\!-1 \\ \!\!\!-1 & 1 \end{pmatrix} & \overline{j} \mapsto \begin{pmatrix} 1 & \!\!\!\!-1 \\ \!\!\!-1 & \!\!\!\!-1 \end{pmatrix} & \overline{k} \mapsto \begin{pmatrix} 0 & 1 \\ \!\!\!-1 & 0 \end{pmatrix}. \end{matrix}</math> This representation can be obtained from the [[Field extension|extension field]]: :<math> \mathbb{F}_9 = \mathbb{F}_3 [k] = \mathbb{F}_3 1 + \mathbb{F}_3 k,</math> where <math>k^2=-1</math> and the multiplicative group <math>\mathbb{F}_9^{\times}</math> has four generators, <math>\pm(k\pm1),</math> of order 8. For each <math>z \in \mathbb{F}_9,</math> the two-dimensional <math>\mathbb{F}_3</math>-vector space <math>\mathbb{F}_9</math> admits a linear mapping: :<math>\begin{cases} \mu_z: \mathbb{F}_9 \to \mathbb{F}_9 \\ \mu_z(a+bk)=z\cdot(a+bk) \end{cases}</math> In addition we have the [[Frobenius endomorphism|Frobenius automorphism]] <math>\phi(a+bk)=(a+bk)^3</math> satisfying <math>\phi^2 = \mu_1 </math> and <math>\phi\mu_z = \mu_{\phi(z)}\phi.</math> Then the above representation matrices are: :<math>\begin{align} \rho(\bar e) &=\mu_{-1}, \\ \rho(i) &=\mu_{k+1}\phi, \\ \rho(j)&=\mu_{k-1} \phi, \\ \rho(k)&=\mu_{k}. \end{align}</math> This representation realizes Q<sub>8</sub> as a [[normal subgroup]] of {{nowrap|GL(2, 3)}}. Thus, for each matrix <math>m\in \operatorname{GL}(2,3)</math>, we have a group automorphism :<math>\begin{cases} \psi_m:\mathrm{Q}_8\to\mathrm{Q}_8 \\ \psi_m(g)=mgm^{-1} \end{cases}</math> with <math>\psi_I =\psi_{-I}=\mathrm{id}_{\mathrm{Q}_8}.</math> In fact, these give the full automorphism group as: :<math>\operatorname{Aut}(\mathrm{Q}_8) \cong \operatorname{PGL}(2, 3) = \operatorname{GL}(2,3)/\{\pm I\}\cong S_4.</math> This is isomorphic to the symmetric group S<sub>4</sub> since the linear mappings <math>m:\mathbb{F}_3^2 \to \mathbb{F}_3^2</math> permute the four one-dimensional subspaces of <math>\mathbb{F}_3^2,</math> i.e., the four points of the [[projective space]] <math>\mathbb{P}^1 (\mathbb{F}_3) = \operatorname{PG}(1,3).</math> Also, this representation permutes the eight non-zero vectors of <math>\mathbb{F}_3^2,</math> giving an embedding of Q<sub>8</sub> in the [[symmetric group]] S<sub>8</sub>, in addition to the embeddings given by the regular representations.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)