Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
RDRAM
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Performance=== Compared to other contemporary standards, Rambus showed an increase in latency, heat output, manufacturing complexity, and cost. Because of more complex interface circuitry and increased number of memory banks, RDRAM die size was larger than that of contemporary SDRAM chips, resulting in a 10–20% price premium at 16 Mbit densities (adding about a 5% penalty at 64 Mbit).<ref>{{cite web |url=http://www.findarticles.com/p/articles/mi_m0EKF/is_n2161_v43/ai_19288320 |title=Electronic News: Rambus seeks IPO but denies Intel stake - Company Financial Information |website=www.findarticles.com |access-date=12 January 2022 |archive-url=https://web.archive.org/web/20041124045440/http://www.findarticles.com/p/articles/mi_m0EKF/is_n2161_v43/ai_19288320 |archive-date=24 November 2004 |url-status=dead}}</ref> Note that the most common RDRAM densities are 128 Mbit and 256 Mbit. PC-800 RDRAM operated with a latency of 45 [[nanosecond|ns]], more than that of other SDRAM varieties of the time. RDRAM memory chips also put out significantly more heat than SDRAM chips, necessitating [[heatsink|heatspreaders]] on all RIMM devices. RDRAM includes additional circuitry (such as packet demultiplexers) on each chip, increasing manufacturing complexity compared to SDRAM. RDRAM was also up to four times more expensive than PC-133 SDRAM due to a combination of higher manufacturing costs and high license fees.{{Citation needed|date=May 2016}} PC-2100 [[DDR SDRAM]], introduced in 2000, operated with a clock rate of 133 MHz and delivered 2100 MB/s over a 64-bit bus using a 184-pin DIMM form factor. With the introduction of the Intel 840 (Pentium III), [[Intel 850]] (Pentium 4), Intel 860 (Pentium 4 Xeon) chipsets, Intel added support for dual-channel PC-800 RDRAM, doubling bandwidth to 3200 MB/s by increasing the bus width to 32 bits. This was followed in 2002 by the Intel 850E chipset, which introduced PC-1066 RDRAM, increasing total dual-channel bandwidth to 4200 MB/s. In 2002, Intel released the E7205 Granite Bay chipset, which introduced dual-channel DDR support (for a total bandwidth of 4200 MB/s) at a slightly lower latency than competing RDRAM. The bandwidth of Granite Bay matched that of the i850E chipset using PC-1066 DRDRAM with considerably lower latency. To achieve RDRAM's 800 MHz clock rate, the memory module runs on a 16-bit bus instead of a 64-bit bus in contemporary SDRAM DIMM. At the time of the Intel 820 launch some RDRAM modules operated at rates less than 800 MHz.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)