Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ramanujan graph
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Algebraic constructions === Several explicit constructions of Ramanujan graphs arise as Cayley graphs and are algebraic in nature. See Winnie Li's survey on Ramanujan's conjecture and other aspects of number theory relevant to these results.<ref>{{Cite journal|last=Li|first=Winnie|title=The Ramanujan conjecture and its applications|url=https://doi.org/10.1098/rsta.2018.0441|journal=Philosophical Transactions of the Royal Society A|year=2020|volume=378-2163|issue=2163|doi=10.1098/rsta.2018.0441| pmc=6939229|pmid=31813366|bibcode=2020RSPTA.37880441W}}</ref> [[Alexander Lubotzky|Lubotzky]], [[Ralph S. Phillips|Phillips]] and [[Peter Sarnak|Sarnak]]<ref name="lps88" /> and independently [[Grigory Margulis|Margulis]]<ref>{{Cite journal|last=Margulis|first=G. A.|date=1988|title=Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators|url=http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=686&option_lang=eng|journal=Probl. Peredachi Inf.|volume=24-1|pages=51β60}}</ref> showed how to construct an infinite family of <math>(p+1)</math>-regular Ramanujan graphs, whenever <math>p</math> is a [[prime number]] and <math>p\equiv 1 \pmod 4</math>. Both proofs use the [[Ramanujan conjecture]], which led to the name of Ramanujan graphs. Besides being Ramanujan graphs, these constructions satisfies some other properties, for example, their [[girth (graph theory)|girth]] is <math>\Omega(\log_{p}(n))</math> where <math>n</math> is the number of nodes. Let us sketch the Lubotzky-Phillips-Sarnak construction. Let <math>q \equiv 1 \bmod 4</math> be a prime not equal to <math>p</math>. By [[Jacobi's four-square theorem]], there are <math>p+1</math> solutions to the equation <math>p=a_0^2+a_1^2+a_2^2+a_3^2</math> where <math>a_0 > 0</math> is odd and <math>a_1, a_2, a_3</math> are even. To each such solution associate the <math>\operatorname{PGL}(2,\Z/q\Z)</math> matrix <math display="block">\tilde \alpha = \begin{pmatrix}a_0 + ia_1 & a_2 + ia_3 \\ -a_2 + ia_3 & a_0 - ia_1\end{pmatrix},\qquad i \text{ a fixed solution to } i^2 = -1 \bmod q.</math>If <math>p </math> is not a quadratic residue modulo <math>q</math> let <math>X^{p,q}</math> be the Cayley graph of <math>\operatorname{PGL}(2,\Z/q\Z)</math> with these <math>p+1</math> generators, and otherwise, let <math>X^{p,q}</math> be the Cayley graph of <math>\operatorname{PSL}(2,\Z/q\Z)</math> with the same generators. Then <math>X^{p,q}</math> is a <math>(p+1)</math>-regular graph on <math>n=q(q^2-1)</math> or <math>q(q^2-1)/2</math> vertices depending on whether or not <math>p </math> is a quadratic residue modulo <math>q</math>. It is proved that <math>X^{p,q}</math> is a Ramanujan graph. Morgenstern<ref name="m94">{{cite journal|author=Moshe Morgenstern|year=1994|title=Existence and Explicit Constructions of q+1 Regular Ramanujan Graphs for Every Prime Power q|journal=[[Journal of Combinatorial Theory]] | series=Series B|volume=62|pages=44β62|doi=10.1006/jctb.1994.1054|doi-access=free}}</ref> later extended the construction of Lubotzky, Phillips and Sarnak. His extended construction holds whenever <math>p</math> is a [[prime power]]. Arnold Pizer proved that the [[supersingular isogeny graph]]s are Ramanujan, although they tend to have lower girth than the graphs of Lubotzky, Phillips, and Sarnak.<ref>{{citation|last=Pizer|first=Arnold K.|title=Ramanujan graphs and Hecke operators|journal=Bulletin of the American Mathematical Society|volume=23|issue=1|pages=127β137|year=1990|series=New Series|doi=10.1090/S0273-0979-1990-15918-X|mr=1027904|doi-access=free}}</ref> Like the graphs of Lubotzky, Phillips, and Sarnak, the degrees of these graphs are always a prime number plus one.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)